Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°. Версия для печати.cos(0°)=cos(360°)=1; точная, но чуть более сложная таблица ( с точностью до 1″) здесь.
|
Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций Доп. Инфо:
|
Таблица косинусов (полная, градусы и значения)
В данной таблице представлены значения косинусов от 0° до 360°. Таблица косинусов нужна, чтобы узнать, чему равен косинус угла. Нужно только найти его в таблице. Для начала короткая версия таблицы.
https://uchim.org/matematika/tablica-kosinusov — uchim.org
Таблица косинусов для 0°-180°
|
|
|
Таблица косинусов для 181°-360°
|
|
|
Как легко запомнить таблицу косинусов (видео)
Существуют также следующие таблицы тригонометрических функций: таблица синусов, таблица тангенсов и таблица котангенсов.
Всё для учебы » Математика в школе » Таблица косинусов (полная, градусы и значения)
Нахождение значений синуса, косинуса, тангенса и котангенса
Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.
В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.
Рассмотрим подробно каждый случай.
Определение 1Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.
Соотношения сторон и углов фигуры используются для того, чтобы определить значения для 30°, 45°, 60°. Если угол выходит за пределы 90°, то перед вычислением значения следует воспользоваться специальной формулой для того, чтобы привести угол к нужному виду.
Если известно значение синуса для α, можно быстро узнать значение косинуса для этого же угла. Это легко выполнить с помощью основных тождеств, которые представлены в геометрии.
В некоторых случаях для того, чтобы узнать sin или cos угла, можно использовать подходящую тригонометрическую формулу. Например, по известному значению синуса 45°, мы сможем определить значение синуса 30°, воспользовавшись правилом из тригонометрии.
Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.
Если взять за основу определения, возможно определить значения для определенного угла α. Также можно вычислить значения тангенса и котангенса для определенного случая. Можно найти значений основных функций из тригонометрии для частных вариантов. Это углы 0°, 90°, 180°, 270°, 360°.
Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π2+2π·z рад), 180+360·z градусов (π+2π·z рад) и 270+360·z градусов (3π2+2π·z рад), где z- любое целое число.
Изобразим данные формулы на рисунке:
Для каждой группы соответствуют свои значения.
Пример 1При повороте из точки A на 360·z°, она переходит в себя. А1(1, 0). Синус 0°, 360°, 720° равен 0, а косинус равен 1. Представим это в виде формулы: sin (360°·z)=0 и cos (360°·z)=1 .
Можно определить, что tg (360°·z)=01=0 , а котангенс не определен.
Пример 2Если А(1, 0) повернуть на 90+360·z°, то она перейдет в А1 (0, 1). По определению: sin (90°+360°·z) =1 и cos (90°+360°·z) =0 . Мы не сможем определить значение тангенса, но котангенс рассчитывается по данной формуле: ctg (90°+360°·z) =01=0 .
Пример 3Рассмотрим особенности для третьей группы углов. После поворота точки А(1, 0) на любой из углов 180+360·z°, она перейдет в A1(−1, 0). Мы находим значения функций кроме тангенса.
Пример 4Рассмотрим правила для четвертой группы углов. При повороте точки на 270+360·z° мы попадем в A1(0, −1). Мы находим значения всех функций кроме тангенса.
Для углов, которые не относятся к перечню от 0 °, 90 °, 180 °, 270 °, 360 °…, точных значений нет. Мы можем найти лишь приближенные значения. Рассмотрим пример. Условия – найти основные значения для угла −52 °. Выполним построения.
Согласно рисунку, абсцисса А1 ≈ 0,62, а ордината ≈ −0,78. Соответственно, sin(-52°)≈-0,78 и cos(-52°)≈0,62 . Осталось определиться с тангенсом и котангенсом.
Выполняем вычисления: tg(-52°)≈-0, 780, 62≈-1,26 и ctg(-52°)≈0,62-0,78≈-0,79.
Чем точнее выполняется чертеж, тем более точными будут значения для каждого индивидуального случая. Выполнять вычисления удобно только в теории, так как на практике довольно сложно и долго выполнять рисунки.
Линии тригонометрических функций
Определение 2Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.
Рассмотрим их на подробном рисунке
Как найти sin α, cos α, tg α, ctg α
Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание Пример 5Для того, чтобы узнать значения для углов тридцати- и шестидесятиградусных углов изображаем прямоугольный треугольник с углами данной величины. Длина гипотенузы должна быть равна 1. Согласно теореме Пифагора, катет, лежащий напротив тридцатиградусного угла, равен половине гипотенузы. Воспользуемся теоремой: 12-122=32 . Так как синус угла – это катет, деленный на гипотенузу, вычисляем, что sin 30°=121=12 и sin 60°=321=32 .
Косинус можно найти по формуле, которая предполагает деление прилежащего катета на гипотенузу. Вычисляем: cos 30°=321=32 и cos 60°=121=12 .
Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий.
Вычисляем: tg 30°=1232=13=33 и tg 60°=3212=3 . Находим котангенс по подобной схеме: сtg 30°=3212=3 и сtg 60°=1232=13=33 . После этого приступаем к вычислению значений основных тригонометрических функций для сорока пятиградусного угла. Используем равнобедренный треугольник с углами 45° и гипотенузой, которая равна 1. Используем теорему Пифагора. Согласно формуле, длины катетов равны 22 . Т
Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.
Выводим формулу: ctg 45°=2222=1 .
Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.
Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.
Значения основных функций тригонометрии
Основные тождества из геометрии связывают с собой sin α, cos α, tg α, ctg α для определенного угла. С помощью одной функции вы легко сможете найти другую.
Определение 3Для того, чтобы найти синус по известному косинусу, sin2α+cos2α=1 .
Определение 4Тангенс по известному косинусу tg2α+1=1cos2α .
Определение 5Котангенс по известному синусу или наоборот 1+ctg2α= 1sin2α .
Определение 6Тангенс через котангенс или наоборот можно найти благодаря удобной формуле: tg α·ctg α=1 .
Для того, чтобы закрепить полученные знания, рассмотрим их на подробном примере
Пример 6Необходимо найти значение синуса угла π8, если tg π8=2-1 .
Сначала найдем котангенс угла: ctgπ8=1tgπ8=12-1=2+1(2-1)·(2+1)= 2+1(2)2-12=2+1 Воспользуемся формулой 1+ctg2α=1sin2α . Благодаря этому мы вычисляем значение синуса. Имеем
sin2π8=11+ctg2π8=11+(2+1)2=14+22=12·(2+2)=2-22·(2+2)·(2-2)==2-22·(22-(2)2)=2-24
Для завершения необходимо определить значение синуса. Угол π8 является углом первой четверти, то синус является положительным. Чтобы точно определить знак, вы можете воспользоваться таблицей, в которой определены знаки по четвертям координатной плоскости. Таким образом, sin π8=sin2π8=2-24=2-22 . sin π8=2-22.
Сведение к углу
Удобнее всего находить значения для угла от 0 до 90 °. Сведение к углу из интервала от 0 до 90 °. Если угол не соответствует заданному интервалу, можно использовать законы и тождества, которые мы учили на уроках геометрии. Тогда мы сможем найти значение, которое будет равно для угла указанных пределах.
Пример 7Задача заключается в том, чтобы найти синус 210°. Представим 210 как разность или сумму, разложив число на несколько. Воспользуемся соответствующей формулой для приведения. Используем формулу для нахождения значения синуса 30°: sin 210°=sin(180°+30°)=-sin 30°=-12 , или косинуса 60 ° sin 210°=sin(270°-60°)=-cos 60°=-12.
Для того, чтобы решать задачи было намного проще, при нахождении значений переходите к углам из интервала от 0 до 90° с помощью формул приведения, если угол не находится в этих пределах.
Использование формул
Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.
Для примера вычислим значение тангенса π8, который был использован в предыдущем примере. Возьмем за основу основные формулы тригонометрии.
Пример 8Найдите значение tgπ8 .
Используя формулу тангенса, преобразуем уравнение до следующего равенства tg2π8=1-cosπ41+cosπ4 . Значения косинуса угла π4 известны из предыдущего примера. Благодаря этому мы быстро найдем значения тангенса.
tg2π8=1-cosπ41+cosπ4=1-221+22=2-22+2==(2-2)2(2+2)·(2-2)=(2-2)222-(2)2=(2-2)22
Угол π8 является углом первой четверти. Согласно таблице основных тригонометрических функций по четвертям координатной плоскости, тангенс этого угла положителен. Продолжаем вычисления для дальнейшего решения: tgπ8=tg2π8=(2-2)22=2-22=2-1
tgπ8=2-1.
Частные случаи
Тригонометрия – довольно сложная наука. Далеко не всегда можно найти формулы, используемые для вычисления. Существует множество уравнений, которые не поддаются стандартным формулам. Некоторые значения очень сложно обозначить точной цифрой. Это не так просто, как может показаться.
Однако точные значения не всегда нужны. Хватает и тех, что не претендуют на высокую точность.°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos\)\(\frac{π}{3}\)\(=\)\(\frac{1}{2}\)
\(\cos2=-0,416…\)
Содержание:
Аргумент и значение
Косинус острого угла
Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.
Пример:
1) Пусть дан угол и нужно определить косинус этого угла.
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить косинус.
Косинус острого угла больше \(0\) и меньше \(1\)
Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.
Косинус числа
Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи: \(\frac{π}{2}\), \(\frac{3π}{4}\), \(-2π\).
Например, для числа \(\frac{π}{6}\) — косинус будет равен \(\frac{\sqrt{3}}{2}\). А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).
Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице.
Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.
Косинус любого угла
Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать — проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.
Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.
Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ), делаем также, но \(60°\) откладываем по часовой стрелке.
И, наконец, угол больше \(360°\) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).
Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) — целых семь.
Стоит запомнить, что:
Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.
Знаки косинуса по четвертям
С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:
— там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).2x}\)
— котангенсом и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sinx}\)
Другие наиболее часто применяемые формулы смотри здесь.
Функция \(y=\cos{x}\)
Если отложить по оси \(x\) углы в радианах, а по оси \(y\) — соответствующие этим углам значения косинуса, мы получим следующий график:
График данной функции называется косинусоида и обладает следующими свойствами:
— область определения – любое значение икса: \(D(\cos{x} )=R\)
— область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x} )=[-1;1]\)
— четная: \(\cos(-x)=\cos{x}\)
— периодическая с периодом \(2π\): \(\cos(x+2π)=\cos{x}\)
— точки пересечения с осями координат:
ось абсцисс: \((\)\(\frac{π}{2}\)\(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
— промежутки знакопостоянства:
функция положительна на интервалах: \((-\)\(\frac{π}{2}\)\(+2πn;\) \(\frac{π}{2}\)\(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\)\(\frac{π}{2}\)\(+2πn;\)\(\frac{3π}{2}\)\(+2πn)\), где \(n ϵ Z\)
— промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
— максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).
Смотрите также:
Синус
Тангенс
Котангенс
Решение уравнения \(\cosx=a\)
Таблица косинусов | Главный механик
Содержание статьи- Что такое косинус угла и как его применять в решении задач
- Как рассчитать косинус угла без формул
- Калькулятор расчета косинуса онлайн
- Примеры решения задач по геометрии по нахождению неизвестных величин с применением таблицы косинусов Брадиса
это удобное решение для проведения быстрых расчетов, когда нужно получить числовое значение косинуса того или иного угла. В статье мы узнаем, что такое косинус, чем похожи и как связаны таблица синусов и косинусов, как использовать таблицу синусов Брадиса для получения конкретных числовых значений косинуса того или иного угла.
Что такое косинус угла и как его применять в решении задачНачнем с того, что каждый знает, что такое прямоугольный треугольник. Им называется такой треугольник, у которого один из углов (C) прямой (равен 90°), остальные два угла (? и ?) острые. Он имеет стандартное обозначение углов и сторон. Тогда, что такое косинус угла, можно рассмотреть дальше.
Прямоугольный треугольник: стороны a (BC) и b (AC) – катеты, сторона с (AB) – гипотенуза
Прямой угол всегда равен 90°, острый – всегда меньше, а тупой – больше 90°
Согласно теореме косинусов, что бы рассчитать угол α или β, нужно знать длину гипотенузы (АВ) и прилежащий к этому углу катет.
Косинус – это отношение прилежащей стороны к гипотенузе:- cos α = b деленное на с;
- cos β = а(BC)/с(AB) .
То есть, если вам нужно узнать, например, какой высоты делать крышу над домом, если известна ширина дома и угол наклона крыши, что бы снег не задерживался, то высоту конька рассчитать не составит труда, применяя теорему косинусов. Нужно помнить, что такие функции, как косинусы и синусы в формулах зависят от угла. Синус работает с противолежащей стороной, косинус с работает прилежащей.
Это тригонометрические формулы для вычисления углов в треугольнике через тригонометрические функции синус, косинус, тангенс, котангенс
Косинус – отношение прилежащего катета к гипотенузе
Если треугольник не прямоугольный, его параметры также можно рассчитать, используя теорему Евклида. Суть ее в том, что треугольник, лежащий на плоскости, и имеющий стороны а, b, с, а также углом α, который находится напротив стороны а, может быть рассчитан по следующей формуле:
а²= b²+с²-2²· b· cos α или:
Отсюда можем найти cos α, cos α =( b²+2²- а²) : 2bс.
Небольшое уточнение: если угол α менее 90°, тогда b²+2²- а² > 0, если α =90°, то b²+2²- а²=0, если α >90°,то есть угол тупой, то и b²+2²- а²< 0.
То же самые расчеты делаем для других углов треугольника:
- с² = а² + b² – 2аb cosγ,
- b² = а² + с² – 2ас cosβ.
Есть некоторые углы, рассчитать косинус которых можно без формул, применяя
таблицу синусов и косинусов π. В ней расчет идет через число π, которое делится на целое число, в зависимости от размера угла, то есть sin 30° = π : 6 или 0,5, cos 30° = √3: 2. В такой таблице есть данные косинуса 30 градусов, косинуса 45 градусов, косинуса 60 градусов, косинуса 90 градусов, косинуса 120 градусов, косинус 180 градусов, косинус 270 градусов, косинус 360 градусов, косинус 0, а также аналогичные значения синусов.Ниже приведена таблица косинусов, дополнительно указаны синусы в их числовом выражении.
Значение угла α (градусов) | Значение угла α в радианах | COS (косинус) |
---|---|---|
Косинус 0 градусов | 0 | 1 |
Косинус 15 градусов | π/12 | 0.9659 |
Косинус 30 градусов | π/6 | 0.866 |
Косинус 45 градусов | π/4 | 0.7071 |
Косинус 50 градусов | 5π/18 | 0.6428 |
Косинус 60 градусов | π/3 | 0.5 |
Косинус 65 градусов | 13π/36 | 0.4226 |
Косинус 70 градусов | 7π/18 | 0.342 |
Косинус 75 градусов | 5π/12 | 0.2588 |
Косинус 90 градусов | π/2 | 0 |
Косинус 105 градусов | 5π/12 | -0.2588 |
Косинус 120 градусов | 2π/3 | -0.5 |
Косинус 135 градусов | 3π/4 | -0.7071 |
Косинус 140 градусов | 7π/9 | -0.766 |
Косинус 150 градусов | 5π/6 | -0.866 |
Косинус 180 градусов | π | -1 |
Косинус 270 градусов | 3π/2 | 0 |
Косинус 360 градусов | 2π | 1 |
Пример 1: Для примера решим следующую задачу. Берем прямоугольный треугольник, у него нужно найти оба угла, но известны гипотенуза с = 12 см, сторона b = 9,2 см. По теореме косинусов
cos α = b : с, cos α = 9,2: 12 = 0, 7667. Далее открываем таблицу Брадиса и научимся, как ею пользоваться для нахождения косинуса угла. С левой стороны таблицы мы напротив косинусов находим ближайшее значение 0, 7672, которое соответствует 39°, поднимаем линию до значения минут и находим 54′.Но наше значение меньше табличного на 0,0006, что становит 3′. Тогда мы вычитаем эту поправку 3′, 39°54′ – 3′ = 39°51′. Второй угол находим, исходя из того, что сумма всех углов в треугольнике не должна превышать 180°. Поэтому 180° – (90° + 39°51′) = 50° 09′. Угол β = 50° 09′. Решаем задачу дальше. Ищем сторону а. Для этого мы можем использовать два способа.
- по формуле а²= b²+с²-2²· b· cos α находим сторону а;
- по формуле cos β=sinα = а: с, а = с · cos β.
Второй вариант немного проще в вычислении. Обращаемся к таблице Брадиса снова. У нас ближайшее значение 50° 06′ = 0,6414. Поправка на 3′ составляет 0, 0007. Тогда 0, 6414 + 0,0007 = 0,6421.
По условию с = 12 см, тогда а = 12 · 0,6421 = 7,7 см. Задача решена. Если значения углов простые, таблица косинусов и синусов может упростить вычисление. Можно использовать следующие тождества: sin (90°+15°) = cos 15°= cos (90°-75°) = sin 75° Функции повторяются, только нужно учитывать знак. Если нужно найти косинус 145 градусов, находим угол до 90 градусов. 180 °– 145° = 35°. Косинус 35 градусов будет 0,8192 по таблице, если это 145°, это будет значение с отрицательным значением -0,8192.
Пример 2: Рассмотрим треугольник с произвольными углами, ни один из которых не равен 90°. Мы имеем две стороны с =12 см, b = 8,2 см, а также угол α, который равен 31°12′. Найти третью сторону. Формула, которая применялась в предыдущей задаче, не подходит, так как у нас треугольник не прямоугольный (по крайней мере мы это ещё не рассчитали). Используем формулу из теоремы косинусов:
а² = b²+с²-2²· b· cos α. Косинус угла находим на пересечении угла 31° и 12′. Он равен числу 0,8554, которое мы и подставляем в формулу.
а² = 67, 24 + 144 -4 · 8,2 · 0,8554 = 211,24 – 28,07 = 183,17. Находим а = √183,17 = 13, 54 (см)
Если будет стоять задание найти ещё и углы треугольника, используем формулу:
с² = а² + b² – 2аb cos γ, отсюда cos γ = (b² + а² – с²): 2 bс. cos γ = (8,2² + 13,54² – 12²): 2· 8,2·12 = (64,24 + 183, 17 – 144): 196,8 = 0, 5255. Открываем таблицу Брадиса. Это число соответствует 58° 18′. Согласно теореме о правилах трёх углов в треугольнике находим третий угол:
180° – 58° 18′-31°12′ =89° 30′. Задача решена!
Можно не рассчитывать самому, а использовать сервис и высчитать косинус онлайн, когда регистрируешься на сайте, и любое вычисление приходит автоматически. Минус такого сервиса, его нельзя применять на экзамене по математике. В качестве справочного материала таблицы предоставляются. Естественно, надо хорошо уметь ими пользоваться, так как на экзамен отводится ограниченное количество времени.
COS | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COS | 60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | 1′ | 2′ | 3′ | |
90° | 0.0000 | ||||||||||||||
89° | 0.0000 | 17 | 35 | 52 | 70 | 87 | 105 | 122 | 140 | 157 | 175 | 3 | 6 | 9 | |
88° | 175 | 192 | 209 | 227 | 244 | 262 | 279 | 297 | 314 | 332 | 349 | 3 | 6 | 9 | |
87° | 349 | 366 | 384 | 401 | 419 | 436 | 454 | 471 | 488 | 506 | 523 | 3 | 6 | 9 | |
86° | 523 | 541 | 558 | 576 | 593 | 610 | 628 | 645 | 663 | 680 | 698 | 3 | 6 | 9 | |
85° | 698 | 715 | 732 | 750 | 767 | 785 | 802 | 819 | 837 | 854 | 0.0872 | 3 | 6 | 9 | |
84° | 0.0872 | 889 | 906 | 924 | 941 | 958 | 976 | 993 | 1011 | 1028 | 1045 | 3 | 6 | 9 | |
83° | 1045 | 1063 | 1080 | 1097 | 1115 | 1132 | 1149 | 1167 | 1184 | 1201 | 1219 | 3 | 6 | 9 | |
82° | 1219 | 1236 | 1253 | 1271 | 1288 | 1305 | 1323 | 1340 | 1357 | 1374 | 1392 | 3 | 6 | 9 | |
81° | 1392 | 1409 | 1426 | 1444 | 1461 | 1478 | 1495 | 1513 | 1530 | 1547 | 1564 | 3 | 6 | 9 | |
80° | 1564 | 1582 | 1599 | 1616 | 1633 | 1650 | 1668 | 1685 | 1702 | 1719 | 0.1736 | 3 | 6 | 9 | |
79° | 0.1736 | 1754 | 1771 | 1788 | 1805 | 1822 | 1840 | 1857 | 1874 | 1891 | 1908 | 3 | 6 | 9 | |
78° | 1908 | 1925 | 1942 | 1959 | 1977 | 1994 | 2011 | 2028 | 2045 | 2062 | 2079 | 3 | 6 | 9 | |
77° | 2079 | 2096 | 2113 | 2130 | 2147 | 2164 | 2181 | 2198 | 2215 | 2233 | 2250 | 3 | 6 | 9 | |
76° | 2250 | 2267 | 2284 | 2300 | 2317 | 2334 | 2351 | 2368 | 2385 | 2402 | 2419 | 3 | 6 | 8 | |
75° | 2419 | 2436 | 2453 | 2470 | 2487 | 2504 | 2521 | 2538 | 2554 | 2571 | 0.2588 | 3 | 6 | 8 | |
74° | 0.2588 | 2605 | 2622 | 2639 | 2656 | 2672 | 2689 | 2706 | 2723 | 2740 | 2756 | 3 | 6 | 8 | |
73° | 2756 | 2773 | 2790 | 2807 | 2823 | 2840 | 2857 | 2874 | 2890 | 2907 | 2924 | 3 | 6 | 8 | |
72° | 2942 | 2940 | 2957 | 2974 | 2990 | 3007 | 3024 | 3040 | 3057 | 3074 | 3090 | 3 | 6 | 8 | |
71° | 3090 | 3107 | 3123 | 3140 | 3156 | 3173 | 3190 | 3206 | 3223 | 3239 | 3256 | 3 | 6 | 8 | |
70° | 3256 | 3272 | 3289 | 3305 | 3322 | 3338 | 3355 | 3371 | 3387 | 3404 | 0.3420 | 3 | 5 | 8 | |
69° | 0.3420 | 3437 | 3453 | 3469 | 3486 | 3502 | 3518 | 3535 | 3551 | 3567 | 3584 | 3 | 5 | 8 | |
68° | 3584 | 3600 | 3616 | 3633 | 3649 | 3665 | 3681 | 3697 | 3714 | 3730 | 3746 | 3 | 5 | 8 | |
67° | 3746 | 3762 | 3778 | 3795 | 3811 | 3827 | 3843 | 3859 | 3875 | 3891 | 3907 | 3 | 5 | 8 | |
66° | 3097 | 3923 | 3939 | 3955 | 3971 | 3987 | 4003 | 4019 | 4035 | 4051 | 4067 | 3 | 5 | 8 | |
65° | 4067 | 4083 | 4099 | 4115 | 4131 | 4147 | 4163 | 4179 | 4195 | 4210 | 0.4226 | 3 | 5 | 8 | |
64° | 0.4226 | 4242 | 4258 | 4274 | 4289 | 4305 | 4321 | 4337 | 4352 | 4368 | 4384 | 3 | 5 | 8 | |
63° | 4384 | 4399 | 4415 | 4431 | 4446 | 4462 | 4478 | 4493 | 4509 | 4524 | 4540 | 3 | 5 | 8 | |
62° | 4540 | 4555 | 4571 | 4586 | 4602 | 4617 | 4633 | 4648 | 4664 | 4679 | 4695 | 3 | 5 | 8 | |
61° | 4695 | 4710 | 4726 | 4741 | 4756 | 4772 | 4787 | 4802 | 4818 | 4833 | 4848 | 3 | 5 | 8 | |
60° | 4848 | 4863 | 4879 | 4894 | 4909 | 4924 | 4939 | 4955 | 4970 | 4985 | 0.5000 | 3 | 5 | 8 | |
59° | 0.5000 | 5015 | 5030 | 5045 | 5060 | 5075 | 5090 | 5105 | 5120 | 5135 | 5150 | 3 | 5 | 8 | |
58° | 5150 | 5165 | 5180 | 5195 | 5210 | 5225 | 5240 | 5255 | 5270 | 5284 | 5299 | 2 | 5 | 7 | |
57° | 5299 | 5314 | 5329 | 5344 | 5358 | 5373 | 5388 | 5402 | 5417 | 5432 | 5446 | 2 | 5 | 7 | |
56° | 5446 | 5461 | 5476 | 5490 | 5505 | 5519 | 5534 | 5548 | 5563 | 5577 | 5592 | 2 | 5 | 7 | |
55° | 5592 | 5606 | 5621 | 5635 | 5650 | 5664 | 5678 | 5693 | 5707 | 5721 | 0.5736 | 2 | 5 | 7 | |
54° | 0.5736 | 5750 | 5764 | 5779 | 5793 | 5807 | 5821 | 5835 | 5850 | 5864 | 0.5878 | 2 | 5 | 7 | |
53° | 5878 | 5892 | 5906 | 5920 | 5934 | 5948 | 5962 | 5976 | 5990 | 6004 | 6018 | 2 | 5 | 7 | |
52° | 6018 | 6032 | 6046 | 6060 | 6074 | 6088 | 6101 | 6115 | 6129 | 6143 | 6157 | 2 | 5 | 7 | |
51° | 6157 | 6170 | 6184 | 6198 | 6211 | 6225 | 6239 | 6252 | 6266 | 6280 | 6293 | 2 | 5 | 7 | |
50° | 6293 | 6307 | 6320 | 6334 | 6347 | 6361 | 6374 | 6388 | 6401 | 6414 | 0.6428 | 2 | 4 | 7 | |
49° | 0.6428 | 6441 | 6455 | 6468 | 6481 | 6494 | 6508 | 6521 | 6534 | 6547 | 6561 | 2 | 4 | 7 | |
48° | 6561 | 6574 | 6587 | 6600 | 6613 | 6626 | 6639 | 6652 | 6665 | 6678 | 6691 | 2 | 4 | 7 | |
47° | 6691 | 6704 | 6717 | 6730 | 6743 | 6756 | 6769 | 6782 | 6794 | 6807 | 6820 | 2 | 4 | 6 | |
46° | 6820 | 6833 | 6845 | 6858 | 6871 | 6884 | 6896 | 8909 | 6921 | 6934 | 6947 | 2 | 4 | 6 | |
45° | 6947 | 6959 | 6972 | 6984 | 6997 | 7009 | 7022 | 7034 | 7046 | 7059 | 0.7071 | 2 | 4 | 6 | |
44° | 0.7071 | 7083 | 7096 | 7108 | 7120 | 7133 | 7145 | 7157 | 7169 | 7181 | 7193 | 2 | 4 | 6 | |
43° | 7193 | 7206 | 7218 | 7230 | 7242 | 7254 | 7266 | 7278 | 7290 | 7302 | 7314 | 2 | 4 | 6 | |
42° | 7314 | 7325 | 7337 | 7349 | 7361 | 7373 | 7385 | 7396 | 7408 | 7420 | 7431 | 2 | 4 | 6 | |
41° | 7431 | 7443 | 7455 | 7466 | 7478 | 7490 | 7501 | 7513 | 7524 | 7536 | 7547 | 2 | 4 | 6 | |
40° | 7547 | 7559 | 7570 | 7581 | 7593 | 7604 | 7615 | 7627 | 7638 | 7649 | 0.7660 | 2 | 4 | 6 | |
39° | 0.7660 | 7672 | 7683 | 7694 | 7705 | 7716 | 7727 | 7738 | 7749 | 7760 | 7771 | 2 | 4 | 6 | |
38° | 7771 | 7782 | 7793 | 7804 | 7815 | 7826 | 7837 | 7848 | 7859 | 7869 | 7880 | 2 | 4 | 5 | |
37° | 7880 | 7891 | 7902 | 7912 | 7923 | 7934 | 7944 | 7955 | 7965 | 7976 | 7986 | 2 | 4 | 5 | |
36° | 7986 | 7997 | 8007 | 8018 | 8028 | 8039 | 8049 | 8059 | 8070 | 8080 | 8090 | 2 | 3 | 5 | |
35° | 8090 | 8100 | 8111 | 8121 | 8131 | 8141 | 8151 | 8161 | 8171 | 8181 | 0.8192 | 2 | 3 | 5 | |
34° | 0.8192 | 8202 | 8211 | 8221 | 8231 | 8241 | 8251 | 8261 | 8271 | 8281 | 8290 | 2 | 3 | 5 | |
33° | 8290 | 8300 | 8310 | 8320 | 8329 | 8339 | 8348 | 8358 | 8368 | 8377 | 8387 | 2 | 3 | 5 | |
32° | 8387 | 8396 | 8406 | 8415 | 8425 | 8434 | 8443 | 8453 | 8462 | 8471 | 8480 | 2 | 3 | 5 | |
31° | 8480 | 8490 | 8499 | 8508 | 8517 | 8526 | 8536 | 8545 | 8554 | 8563 | 8572 | 2 | 3 | 5 | |
30° | 8572 | 8581 | 8590 | 8599 | 8607 | 8616 | 8625 | 8634 | 8643 | 8652 | 0.8660 | 1 | 3 | 4 | |
29° | 0.8660 | 8669 | 8678 | 8686 | 8695 | 8704 | 8712 | 8721 | 8729 | 8738 | 8746 | 1 | 3 | 4 | |
28° | 8746 | 8755 | 8763 | 8771 | 8780 | 8788 | 8796 | 8805 | 8813 | 8821 | 8829 | 1 | 3 | 4 | |
27° | 8829 | 8838 | 8846 | 8854 | 8862 | 8870 | 8878 | 8886 | 8894 | 8902 | 8910 | 1 | 3 | 4 | |
26° | 8910 | 8918 | 8926 | 8934 | 8942 | 8949 | 8957 | 8965 | 8973 | 8980 | 8988 | 1 | 3 | 4 | |
25° | 8988 | 8996 | 9003 | 9011 | 9018 | 9026 | 9033 | 9041 | 9048 | 9056 | 0.9063 | 1 | 3 | 4 | |
24° | 0.9063 | 9070 | 9078 | 9085 | 9092 | 9100 | 9107 | 9114 | 9121 | 9128 | 9135 | 1 | 2 | 4 | |
23° | 9135 | 9143 | 9150 | 9157 | 9164 | 9171 | 9178 | 9184 | 9191 | 9198 | 9205 | 1 | 2 | 3 | |
22° | 9205 | 9212 | 9219 | 9225 | 9232 | 9239 | 9245 | 9252 | 9259 | 9256 | 9272 | 1 | 2 | 3 | |
21° | 9272 | 9278 | 9285 | 9291 | 9298 | 9304 | 9311 | 9317 | 9323 | 9330 | 9336 | 1 | 2 | 3 | |
20° | 9336 | 9342 | 9348 | 9354 | 9361 | 9367 | 9373 | 9379 | 9383 | 9391 | 0.9397 | 1 | 2 | 3 | |
19° | 9397 | 9403 | 9409 | 9415 | 9421 | 9426 | 9432 | 9438 | 9444 | 9449 | 0.9455 | 1 | 2 | 3 | |
18° | 9455 | 9461 | 9466 | 9472 | 9478 | 9483 | 9489 | 9494 | 9500 | 9505 | 9511 | 1 | 2 | 3 | |
17° | 9511 | 9516 | 9521 | 9527 | 9532 | 9537 | 9542 | 9548 | 9553 | 9558 | 9563 | 1 | 2 | 3 | |
16° | 9563 | 9568 | 9573 | 9578 | 9583 | 9588 | 9593 | 9598 | 9603 | 9608 | 9613 | 1 | 2 | 2 | |
15° | 9613 | 9617 | 9622 | 9627 | 9632 | 9636 | 9641 | 9646 | 9650 | 9655 | 0.9659 | 1 | 2 | 2 | |
14° | 9659 | 9664 | 9668 | 9673 | 9677 | 9681 | 9686 | 9690 | 9694 | 9699 | 9703 | 1 | 1 | 2 | |
13° | 9703 | 9707 | 9711 | 9715 | 9720 | 9724 | 9728 | 9732 | 9736 | 9740 | 9744 | 1 | 1 | 2 | |
12° | 9744 | 9748 | 9751 | 9755 | 9759 | 9763 | 9767 | 9770 | 9774 | 9778 | 9781 | 1 | 1 | 2 | |
11° | 9781 | 9785 | 9789 | 9792 | 9796 | 9799 | 9803 | 9806 | 9810 | 9813 | 9816 | 1 | 1 | 2 | |
10° | 9816 | 9820 | 9823 | 9826 | 9829 | 9833 | 9836 | 9839 | 9842 | 9845 | 0.9848 | 1 | 1 | 2 | |
9° | 0.9848 | 9851 | 9854 | 9857 | 9860 | 9863 | 9866 | 9869 | 9871 | 9874 | 9877 | 0 | 1 | 1 | |
8° | 9877 | 9880 | 9882 | 9885 | 9888 | 9890 | 9893 | 9895 | 9898 | 9900 | 9903 | 0 | 1 | 1 | |
7° | 9903 | 9905 | 9907 | 9910 | 9912 | 9914 | 9917 | 9919 | 9921 | 9923 | 9925 | 0 | 1 | 1 | |
6° | 9925 | 9928 | 9930 | 9932 | 9934 | 9936 | 9938 | 9940 | 9942 | 9943 | 9945 | 0 | 1 | 1 | |
5° | 9945 | 9947 | 9949 | 9951 | 9952 | 9954 | 9956 | 9957 | 9959 | 9960 | 9962 | 0 | 1 | 1 | |
4° | 9962 | 9963 | 9965 | 9966 | 9968 | 9969 | 9971 | 9972 | 9973 | 9974 | 9976 | 0 | 0 | 1 | |
3° | 9976 | 9977 | 9978 | 9979 | 9980 | 9981 | 9982 | 9983 | 9984 | 9985 | 9986 | 0 | 0 | 0 | |
2° | 9986 | 9987 | 9988 | 9989 | 9990 | 9990 | 9991 | 9992 | 9993 | 9993 | 9994 | 0 | 0 | 0 | |
1° | 9994 | 9995 | 9995 | 9996 | 9996 | 9997 | 9997 | 9997 | 9998 | 9998 | 0.9998 | 0 | 0 | 0 | |
0° | 9998 | 9999 | 9999 | 9999 | 9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0 | 0 | 0 | |
1.0000 |
Значение синуса, косинуса и тангенса для углов 30, 45 и 60
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Подобные треугольники
- Значение синуса, косинуса и тангенса для углов 30, 45 и 60
Рассмотрим прямоугольный треугольник АВС с прямым углом С, у которого А = 300, В = 600.
Так как катет, лежащий против угла в 300, равен половине гипотенузы, то
Но С другой стороны, Итак,
Из основного тригонометрического тождества получаем:
Так как , то:
Рассмотрим прямоугольный треугольник АВС с прямым углом С, у которого А = 450, В = 450. Данный треугольник является равнобедренным по признаку равнобедренного треугольника, поэтому АВ = АС.
По теореме Пифагора откуда
Следовательно,
Составим таблицу значений sin , cos , tg для углов , равных 300, 450, 600:
Поделись с друзьями в социальных сетях:
Советуем посмотреть:
Пропорциональные отрезки
Определение подобных треугольников
Отношение площадей подобных треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Средняя линия треугольника
Пропорциональные отрезки в прямоугольном треугольнике
Практические приложения подобия треугольников
О подобии произвольных фигур
Синус, косинус и тангенс острого угла прямоугольного треугольника
Подобные треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 642, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 652, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1018, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1020, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1022, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1023, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1087, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1088, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1090, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1215, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
© budu5.com, 2021
Пользовательское соглашение
Copyright
Косинус
КОСИНУС УГЛА (cos) – это отношение прилежащего катета прямоугольного треугольника к гипотенузе.
Рассмотрим по квадрантам изменения функции косинуса угла а при том же движении подвижного радиуса ОВ по окружности от 0° до 360°.
По определению косинуса угла: cos α = OC / OB. Для единичной окружности, где ОВ=1, это длина отрезка ОС. Следовательно, косинус угла – это величина проекции подвижного отрезка ОВ на ось х.
Величина отрезка ОС изменяется (в пределах окружности) на оси х в зависимости от положения подвижного радиуса (величины угла).
Рассмотрим изменения функции (отрезка ОС) при движении подвижного радиуса по окружности и увеличении угла. Пределы изменения косинуса угла будем определять по квадрантам.
В I квадранте (ОС):
при α = 0° cos α = 1;
при 0° < α < 90° 1 > cos α > 0;
при α = 90° cos α = 0.
Во II квадранте (ОС1):
при α = 90° cos α = 0;
при 90° < α < 180° 0 > cos α > -1;
при α = 180° cos α = -1.
За пройденный подвижным радиусом (ОВ) первый полукруг изменился от 1 до -1, наибольшее и наименьшее его значения совпадают с длиной радиуса на положительной и отрицательной полуосях х.
Второй полукруг движения подвижного радиуса можно рассматривать как положительное направление (при движении ОВ дальше против часовой стрелки) и как отрицательное направление (если ОВ вращать по часовой стрелке). Рассмотрим только положительное направление.
В III квадранте (ОС2):
при α = 180° cos α = -1;
при 180° < α < 270° -1 < cos α < 0;
при α = 270° cos α = 0;
В IV квадранте (ОС3):
при α = 270° cos α = 0;
при 270° < α < 360° 0 < cos α < 1;
при α = 360° cos α = 1.
За пройденный второй полукруг изменился от -1 до 1, а наименьшее и наибольшее его значения совпадают с длиной радиуса на отрицательной и положительной полуоси х.
За весь оборот подвижного радиуса ОВ, от совпадения с ОА до второго их совпадения, угол численно изменился от 0° до 360°, а численное значение косинуса угла изменялось в предела от 1 до -1.
Численное значение синуса и косинуса угла зависит только от градусной меры угла и не зависит от параметров прямоугольного треугольника и его расположения на плоскости. Функции синуса и косинуса угла в численном значении не превышают 1.
Вычислить значения синуса и косинуса любого острого угла прямоугольного треугольника всегда можно, если известны длины его катетов и гипотенузы, но чаще вычисления не производят, а считывают значения функций по таблицам логарифмов тригонометрических функций в зависимости от величины острого угла.
Косинус
Косинус, записываемый как cos (θ), является одной из шести основных тригонометрических функций.
Определения косинусов
Существует два основных способа обсуждения тригонометрических функций: в терминах прямоугольных треугольников и в терминах единичной окружности. Чаще всего вводятся определение тригонометрических функций в виде прямоугольного треугольника, за которым следуют их определения в терминах единичной окружности.
Определение прямоугольного треугольника
Для прямоугольного треугольника с острым углом θ значение синуса этого угла определяется как отношение длины соседней стороны к длине гипотенузы.
Стороны прямоугольного треугольника обозначаются следующим образом:
- Соседний: сторона рядом с θ, которая не является гипотенузой
- Справа: сторона, противоположная θ.
- Гипотенуза: самая длинная сторона треугольника напротив прямого угла.
Пример:
Найдите cos (θ) для прямоугольного треугольника ниже.
Мы также можем использовать функцию косинуса при решении реальных задач, связанных с прямоугольными треугольниками.
Пример:
Самолет пролетает над человеком. Человек регистрирует угол возвышения 25 °, когда расстояние по прямой (гипотенуза треугольника) между человеком и самолетом составляет 14 миль. Какое расстояние по горизонтали между самолетом и человеком?
Учитывая информацию выше, мы можем сформировать прямоугольный треугольник, в котором x — это расстояние по горизонтали между человеком и плоскостью, расстояние по прямой между человеком и плоскостью — это гипотенуза, а расстояние по вертикали между конечными концами треугольника. x, а гипотенуза образует прямой угол треугольника.Затем мы можем найти горизонтальное расстояние x, используя функцию косинуса:
x = 14 × cos (25 °) ≈ 12,69
Горизонтальное расстояние между человеком и самолетом составляет около 12,69 миль.
Определение единичного круга
Тригонометрические функции также могут быть определены как значения координат на единичной окружности. Единичный круг — это круг радиуса 1 с центром в начале координат. Определение тригонометрических функций в прямоугольном треугольнике допускает углы от 0 ° до 90 ° (0 и в радианах).Использование определений единичного круга позволяет нам расширить область определения тригонометрических функций на все действительные числа. См. Рисунок ниже.
Учитывая точку (x, y) на окружности единичной окружности, мы можем сформировать прямоугольный треугольник, как показано на рисунке. В таком треугольнике гипотенуза — это радиус единичного круга, или 1. θ — это угол, образованный между начальной стороной угла вдоль оси x и конечной стороной угла, образованной вращением луча по часовой стрелке или против часовой стрелки.Конечная сторона угла — это гипотенуза прямоугольного треугольника и радиус единичной окружности. Следовательно, он всегда имеет длину 1. Таким образом, мы можем использовать определение косинуса в прямоугольном треугольнике, чтобы определить, что
означает, что значение x любой точки на окружности единичной окружности равно cos (θ).
В отличие от определений тригонометрических функций, основанных на прямоугольных треугольниках, это определение работает для любого угла, а не только для острых углов прямоугольных треугольников, если он находится в пределах области cos domain (θ).Область определения функции косинуса — (-∞, ∞), а диапазон функции косинуса — [-1, 1].
Значения функции косинуса
Существует множество методов, которые можно использовать для определения значения косинуса, например, обращение к таблице косинусов, использование калькулятора и аппроксимация с использованием ряда косинусов Тейлора. В большинстве практических случаев нет необходимости вычислять значение косинуса вручную, и вам будет предоставлена таблица, калькулятор или другие справочные материалы.
Калькулятор косинусов
Ниже приведен калькулятор, позволяющий определить значение косинуса угла или угол по значению косинуса.
Уголки общеупотребительные
Хотя мы можем найти cos (θ) для любого угла, есть некоторые углы, которые чаще используются в тригонометрии. Ниже приведены 16 часто используемых углов в радианах и градусах, а также координаты их соответствующих точек на единичной окружности.
Приведенный выше рисунок служит справочным материалом для быстрого определения косинусов (значение x) и синусов (значение y) углов, которые обычно используются в тригонометрии. Как видно из рисунка, косинус имеет значение 0 при 90 ° и значение 1 при 0 °.Синус следует противоположному шаблону; это потому, что синус и косинус являются совместными функциями (описанными позже). Другие часто используемые углы — 30 ° (), 45 ° (), 60 ° () и их соответствующие кратные. Значения косинуса и синуса этих углов стоит запомнить в контексте тригонометрии, поскольку они очень часто используются.
Один из методов, который может помочь запомнить эти значения, — это выразить все значения cos (θ) в виде дробей, содержащих квадратный корень. Начиная с 0 ° и до 90 °, cos (0 °) = 1 =.Последующие значения cos (30 °), cos (45 °), cos (60 °) и cos (90 °) следуют шаблону, так что, используя значение cos (0 °) в качестве эталона, найти значения косинуса для последующих углов, мы просто уменьшаем число под знаком корня в числителе на 1, как показано ниже:
С 90 ° до 180 ° вместо этого мы увеличиваем число под корнем на 1, но также должны учитывать квадрант, в котором находится угол. Косинус отрицателен в квадрантах II и III, поэтому значения будут равными, но отрицательными. .В квадрантах I и IV значения будут положительными. Этот шаблон периодически повторяется для соответствующих угловых измерений. Аналогичный метод запоминания можно использовать и для синуса. При необходимости обратитесь к странице синуса.
Знание значений косинуса и синуса для углов в первом квадранте позволяет нам определить их значения для соответствующих углов в остальных квадрантах в координатной плоскости с помощью опорных углов.
Базовые углы
Базовый угол — это острый угол (<90 °), который можно использовать для обозначения угла любой меры.Любой угол в координатной плоскости имеет опорный угол от 0 ° до 90 °. Это всегда наименьший угол (относительно оси x), который может быть получен с конечной стороны угла. На рисунке ниже показан угол θ и его опорный угол θ '.
Поскольку θ ‘является опорным углом θ, cos both (θ) и cos (θ’) имеют одинаковое значение. Например, 30 ° — это опорный угол 150 °, и если мы обратимся к единичному кругу, мы увидим, что косинусы обоих имеют величину, хотя и имеют разные знаки.Поскольку все углы имеют опорный угол, нам действительно нужно знать только значения cos (θ) (а также значения других тригонометрических функций) в квадранте I. Все другие соответствующие углы будут иметь значения той же величины, и мы просто нужно обратить внимание на их знаки, основанные на квадранте, в котором находится конечная сторона угла. Ниже приведена таблица, показывающая знаки косинуса, синуса и тангенса в каждом квадранте.
Косинус | Синус | Касательная | |
Квадрант I | + | + | + |
Квадрант II | — | + | — |
Квадрант III | —— | + | |
Квадрант IV | + | — | — |
Как только мы определим опорный угол, мы можем определить значение тригонометрических функций в любом из других квадрантов, применив соответствующий знак их значения для опорного угла.Следующие шаги можно использовать, чтобы найти опорный угол заданного угла, θ:
- Вычтите 360 ° или 2π из угла столько раз, сколько необходимо (угол должен быть от 0 ° до 360 ° или от 0 до 2π). Если полученный угол составляет от 0 ° до 90 °, это опорный угол.
- Определите, в каком квадранте находится конечная сторона угла (начальная сторона угла расположена вдоль положительной оси x)
- В зависимости от того, в каком квадранте находится конечная сторона угла, используйте уравнения в таблице ниже, чтобы найти опорный угол.В квадранте I θ ‘= θ.
Квадрант II | Квадрант III | Квадрант IV |
---|---|---|
θ ‘= 180 ° — θ | θ ‘= θ — 180 ° | θ ‘= 360 ° — θ |
Пример:
Найдите cos (120 °).
- θ уже находится между 0 ° и 360 °
- 120 ° лежит во II квадранте
- 180 ° — 120 ° = 60 °, поэтому исходный угол составляет 60 °
.120 ° находится в квадранте II, а косинус отрицателен во втором квадранте, поэтому:
Пример:
Найдите cos (1050 °).
- 1050 ° — 360 ° = 690 ° — 360 ° = 330 °
- 330 ° лежит в квадранте IV
- 360 ° — 330 ° = 30 °, поэтому исходный угол равен 30 °
. 330 ° находится в квадранте IV, а косинус положительный в квадранте IV, поэтому:
Свойства функции косинуса
Ниже приводится ряд свойств функции косинуса, которые может быть полезно знать при работе с тригонометрическими функциями.
Косинус является совместной функцией синуса
Кофункция — это функция, в которой f (A) = g (B) при условии, что A и B являются дополнительными углами. В контексте косинуса и синуса
cos (θ) = sin (90 ° — θ)
sin (θ) = cos (90 ° — θ)
Пример:
cos (30 °) = sin (90 ° — 30 °) = sin (60 °)
Ссылаясь на единичный круг, показанный выше, мы можем подставить значения для cos (30 °) и sin (60 °) и увидеть, что:
Косинус — четная функция
Четная функция — это функция, в которой f (x) = f (-x), что означает, что отражение графика по оси y даст тот же график.Таким образом,
cos (θ) = cos (-θ)
Пример:
cos (60 °) = cos (-60 °)
cos (60 °) = cos (300 °)
Обращаясь к единичной окружности, мы видим, что cos (60 °) = и cos (-60 °) эквивалентен cos (300 °), который также равен. Это только один пример, но это свойство верно для всех θ.
Косинус — периодическая функция
Периодическая функция — это функция f, в которой существует некоторое положительное значение p, такое что
е (х + р) = е (х)
для всех x в области f, p — наименьшее положительное число, для которого f является периодическим, и называется периодом f.
Тригонометрические функции обычно используются для моделирования периодических явлений из-за их периодичности; независимо от того, с какой точки мы начинаем на единичной окружности, если мы пройдем расстояние 2π (360 °) по единичной окружности от этой точки, мы вернемся к нашей начальной точке. Если мы посмотрим на функцию косинуса, мы обнаружим, что она повторяется каждые 2π, поэтому 2π — это период функции косинуса. Мы можем записать это как:
cos (θ + 2π) = cos (θ)
Для учета нескольких полных оборотов это также можно записать как
cos (θ + 2πn) = cos (θ)
, где n — целое число.
На рисунке ниже показан пример этой периодичности.
Синим цветом мы это видим. . Если мы прибавим 2π к, мы получим угол, показанный красным,. Как видно из рисунка, несмотря на разную степень поворота в обоих углах, их конечные стороны абсолютно одинаковы, что означает, что. Мы могли бы добавить еще 2π и все равно увидеть, что оно имеет то же значение косинуса, что и. Такова природа периодических функций. называются концевыми углами; это углы с одинаковой начальной и конечной сторонами, но с разными поворотами.
Примеры:
1.
2.
График функции косинуса
График косинуса является периодическим, что означает, что он повторяется бесконечно и имеет область значений -∞ Если бесконечно повторять эту часть y = cos inde (x) слева и справа, то получится полный график косинуса.Ниже приведен график, показывающий четыре периода функции косинуса в интервале [-4π, 4π]. На этом графике мы видим, что y = cos (x) демонстрирует симметрию оси y; отражение графика косинуса по оси y дает тот же график. Это подтверждает, что косинус является четной функцией, поскольку cos (x) = cos (-x). Общий вид функции косинуса y = A · cos (B (x — C)) + D где A, B, C и D — константы.Чтобы иметь возможность изобразить уравнение косинуса в общем виде, нам нужно сначала понять, как каждая из констант влияет на исходный график y = cos (x), как показано выше. Чтобы применить все, что написано ниже, уравнение должно иметь форму, указанную выше; будьте осторожны со знаками. A — амплитуда функции; высота от центра графика до максимума или минимума. В y = cos (x) центром является ось x, а амплитуда равна 1, или A = 1, поэтому самая высокая и самая низкая точки, которых достигает график, равны 1 и -1, диапазон cos (x) . По сравнению с y = cos (x), показанным ниже фиолетовым цветом, функция y = 2 cos (x) (красный) имеет амплитуду, которая в два раза больше, чем у исходного графика косинуса. B — используется для определения периода функции; период функции — это расстояние от пика до пика (или любой точки на графике до следующей совпадающей точки) и может быть найден как. В y = cos (x) период равен 2π. Мы можем подтвердить это, посмотрев на пики на графике косинусов. При x = 0 y = cos (x) имеет пик.Первый раз на функции появляется еще один пик при x = & plusmn2π, подтверждая, что период косинуса равен 2π. По сравнению с y = cos (x), показанным ниже фиолетовым цветом, который имеет период 2π, y = cos (2x) (красный) имеет период
. Это означает, что график повторяется каждое π, а не каждые 2π. C — фазовый сдвиг функции; фазовый сдвиг определяет, как функция сдвигается по горизонтали. Если C отрицательно, функция сдвигается влево. Если C положительно, функция сдвигается вправо.Остерегайтесь знака; если у нас есть уравнение, то C нет, потому что это уравнение в стандартной форме. Таким образом, мы бы сместили единицы графика влево. На рисунке ниже показаны y = cos (x) (фиолетовый) и (красный). Используя один из пиков графика косинуса в качестве ориентира, мы можем увидеть, что пик в точке (0,1) был смещен влево от своего исходного положения и теперь находится в точке (, 1). D — вертикальный сдвиг функции; если D положительно, график сдвигается вверх на D единиц, а если он отрицателен, график сдвигается вниз. По сравнению с y = cos (x), показанным ниже фиолетовым цветом, с центром на оси x (y = 0), y = cos (x) +5 (красный) с центром на линии y = 5 (синий). Объединив все приведенные выше примеры, на рисунке ниже показан график (красный) по сравнению с графиком y = cos (x) (фиолетовый). См. Также синус, касательную, единичную окружность, тригонометрические функции, тригонометрию. cos (x), функция косинуса. В прямоугольном треугольнике ABC синус α, sin (α) равен
определяется как отношение между стороной, прилегающей к углу α, и
сторона, противоположная прямому углу (гипотенуза): cos α = b / c b = 3 дюйма c = 5 дюймов cos α = b / c = 3/5 = 0,6 TBD Арккосинус x определяется как функция, обратная косинусу x, когда -1≤x≤1. Когда косинус y равен x: cos y = x Тогда арккосинус x равен функции обратного косинуса x, которая равна y: arccos x = cos -1 x = y arccos 1 = cos -1 1 = 0 рад = 0 ° См .: Функция Arccos (°) (рад) Функция косинуса — это
периодический
функция, которая очень важна в тригонометрии. Самый простой способ понять функцию косинуса — использовать единичную окружность. Для заданного угла измерения
θ
, нарисуйте единичный круг на координатной плоскости и нарисуйте угол с центром в начале координат, с одной стороной в качестве положительного
Икс
-ось. В
Икс
-координата точки, где другая сторона угла пересекает круг, равна
потому что
(
θ
)
, а
у
-координата
грех
(
θ
)
. Есть несколько значений косинуса, которые следует запомнить, исходя из
30
°
—
60
°
—
90
°
треугольники
а также
45
°
—
45
°
—
90
°
треугольники
. Зная эти значения, вы можете получить много других значений для функции косинуса.Помните, что cos \ theta; положительно в квадрантах
я
а также
я
V
и отрицательные в квадрантах
я
я
а также
я
я
я
. Вы можете нанести эти точки на координатную плоскость, чтобы показать часть функции косинуса, часть между
0
а также
2
π
. Для значений
θ
меньше, чем
0
или больше чем
2
π
вы можете найти ценность
потому что
(
θ
)
с помощью
опорный угол
. График функции в более широком интервале показан ниже. Обратите внимание, что функция — это вся реальная линия, а диапазон —
—
1
≤
у
≤
1
. В
период
из
ж
(
Икс
)
знак равно
потому что
(
Икс
)
является
2
π
. То есть форма кривой повторяется каждые
2
π
-единичный интервал на
Икс
-ось. В
амплитуда
из
ж
(
Икс
)
знак равно
потому что
(
Икс
)
является
1
, то есть высота волны. Модифицированная функция
у
знак равно
а
потому что
(
б
Икс
)
имеет амплитуду
а
и период
2
π
/
б
. Затем рассмотрим углы 30 ° и 60 °.В прямоугольном треугольнике 30 ° -60 ° -90 ° отношения
сторон равны 1: √3: 2. Отсюда следует, что
sin 30 ° = cos 60 ° = 1/2, и
sin 60 ° = cos 30 ° = √3 / 2. Эти выводы занесены в эту таблицу. 30. b = 2,25 метра и cos A = 0,15. Найдите a и c. 33. b = 12 футов и cos B = 1/3. Найдите c и a. 35. b = 6,4, c = 7,8. Найдите A, и a. 36. A = 23 ° 15 ‘, c = 12.15. Найдите a, и b. 30. Косинус A связывает b с гипотенузой c, , поэтому вы можете сначала вычислить c. Как только вы узнаете b и c, , вы сможете найти a по теореме Пифагора. 33. Вы знаете b и cos B. К сожалению, cos B — это отношение двух сторон, которых вы не знаете, а именно a / c. Тем не менее, это дает вам уравнение, с которым можно работать: 1/3 = a / c. Тогда c = 3 a. Тогда из теоремы Пифагора следует, что a 2 + 144 = 9 a 2 . Вы можете решить это последнее уравнение для a , а затем найти c. 35. b и c дают A, по косинусам и a по теореме Пифагора. 36. A и c дают a по синусам и b по косинусам. 30. c = b / cos A = 2,25 / 0,15 =
15 метров; a = 14,83 метра. 33. 8 a 2 = 144, поэтому a 2 = 18. Следовательно, a равно 4,24 ‘или 4’3 «. 35. cos A = b / c = 6,4 / 7,8 = 0,82. Следовательно, A = 34,86 ° = 34 ° 52 ‘, или около 35 °. 36. a = c sin A = 12,15 sin 23 ° 15 ‘= 4,796. Функция косинуса, наряду с синусом и тангенсом, является одной из трех наиболее распространенных
тригонометрические функции.В любом прямоугольном треугольнике
косинус угла — это длина смежной стороны (A), деленная на длину
гипотенуза (H).
В формуле он записывается просто как «cos». В качестве примера предположим, что мы хотим найти косинус угла C на рисунке выше (сначала нажмите «сбросить»).
Из приведенной выше формулы мы знаем, что косинус угла — это смежная сторона, деленная на гипотенузу.Соседняя сторона — это BC и имеет длину 26. Гипотенуза — это AC с длиной 30. Таким образом, мы можем написать Это деление на калькуляторе получается 0,866.
Таким образом, мы можем сказать: « Косинус 30 ° равен 0,866 » или Воспользуйтесь калькулятором, чтобы найти косинус 30 °. Как и выше, должно получиться 0,8660. Если мы посмотрим на общее определение — мы видим, что есть три переменные: размер угла x и длины двух сторон (смежная и гипотенуза).Итак, если у нас есть какие-то два из них, мы можем найти третий. На рисунке выше нажмите «Сброс». Представьте, что мы не знаем длины гипотенузы H.
Мы знаем, что косинус A (60 °) — это смежная сторона (15), деленная на H. Из нашего калькулятора мы находим, что cos60 равен 0,5, поэтому мы можем написать Транспонирование: что составляет 30, что соответствует цифре выше. Для каждой тригонометрической функции, такой как cos, существует обратная функция, которая работает в обратном порядке.Эти обратные функции имеют то же имя, но с дугой впереди.
Таким образом, cos является обратной величиной arccos и т. Д. Когда мы видим «arccos A», мы интерпретируем его как «угол, косинус которого равен A». Мы используем его, когда знаем, что такое косинус угла, и хотим узнать фактический угол. В прямоугольном треугольнике два переменных угла всегда меньше 90 °.
(См. Внутренние углы треугольника).
Но на самом деле мы можем найти косинус любого угла, независимо от его размера, а также косинус отрицательных углов.
Подробнее об этом см. Функции больших и отрицательных углов. Когда косинус угла отображается в зависимости от угла, в результате получается форма, аналогичная приведенной выше. Для получения дополнительной информации см. Графики функции косинуса. В расчетах производная cos (x) равна –sin (x) .
Это означает, что при любом значении x скорость изменения или наклон cos (x) составляет –sin (x) .
Подробнее об этом см.
Производные тригонометрических функций вместе с производными других тригонометрических функций.
См. Также Оглавление по исчислению. (C) Открытый справочник по математике, 2011 г. Чтобы определить наши тригонометрические функции, мы начнем с рисования единичного круга, круга с центром в начале координат и радиусом 1, как показано на рисунке 2.Угол (в радианах), который пересекает [latex] t [/ latex], образует дугу длиной [latex] s [/ latex]. Используя формулу [latex] s = rt [/ latex] и зная, что [latex] r = 1 [/ latex], мы видим, что для единичной окружности , [latex] s = t [/ latex]. Напомним, что оси x- и y- делят координатную плоскость на четыре четверти, называемых квадрантами. Мы помечаем эти квадранты, чтобы имитировать направление, в котором будет разворачиваться положительный угол. Четыре квадранта обозначены I, II, III и IV. Для любого угла [латекс] t [/ латекс] мы можем обозначить пересечение конечной стороны и единичного круга его координатами, [латекс] \ left (x, y \ right) [/ latex]. Координаты [latex] x [/ latex] и [latex] y [/ latex] будут выходными данными тригонометрических функций [latex] f \ left (t \ right) = \ cos t [/ latex] и [latex] f \ left (t \ right) = \ sin t [/ latex] соответственно. Это означает [латекс] x = \ cos t [/ latex] и [латекс] y = \ sin t [/ latex]. Рис. 2. Единичная окружность с центральным углом [латекс] t [/ латекс] радиан Единичная окружность имеет центр [латекс] \ влево (0,0 \ вправо) [/ латекс] и радиус [латекс] 1 [/ латекс].В единичном круге длина перехваченной дуги равна радианам центрального угла [латекс] 1 [/ латекс]. Пусть [latex] \ left (x, y \ right) [/ latex] будет конечной точкой на единичной окружности дуги длины дуги [latex] s [/ latex]. Координаты [latex] \ left (x, y \ right) [/ latex] этой точки могут быть описаны как функции угла. Теперь, когда у нас есть помеченная единичная окружность, мы можем узнать, как координаты [latex] \ left (x, y \ right) [/ latex] соотносятся с длиной дуги и углом .Синусоидальная функция связывает действительное число [латекс] t [/ латекс] с координатой y точки, в которой соответствующий угол пересекает единичную окружность. Точнее, синус угла [латекс] t [/ латекс] равен значению y конечной точки на единичной окружности дуги длиной [латекс] t [/ латекс]. На рисунке 2 синус равен [latex] y [/ latex]. Как и все функции, синусоидальная функция имеет вход и выход. Его вход — мера угла; его выход — координата y соответствующей точки на единичной окружности. Функция косинуса угла [латекс] t [/ латекс] равна значению x конечной точки на единичной окружности дуги длиной [латекс] t [/ латекс]. На рисунке 3 косинус равен [латекс] х [/ латекс]. Рисунок 3 Поскольку понятно, что синус и косинус являются функциями, нам не всегда нужно записывать их в скобках: [latex] \ sin t [/ latex] то же самое, что [latex] \ sin \ left (t \ right) [ / latex] и [latex] \ cos t [/ latex] то же самое, что и [latex] \ cos \ left (t \ right) [/ latex].{2} [/ латекс]. Имейте в виду, что многие калькуляторы и компьютеры не распознают сокращенную запись. В случае сомнений используйте дополнительные скобки при вводе вычислений в калькулятор или компьютер. Если [латекс] t [/ latex] является действительным числом и точка [латекс] \ left (x, y \ right) [/ latex] на единичном круге соответствует углу [латекса] t [/ latex] , затем [латекс] \ cos t = x [/ латекс] [латекс] \ sin t = y [/ латекс] Точка [латекс] P [/ латекс] — это точка на единичной окружности, соответствующая углу [латекс] t [/ латекс], как показано на рисунке 4. Найдите [латекс] \ cos \ left (t \ right) [/ latex] и [latex] \ text {sin} \ left (t \ right) [/ latex]. Рисунок 4 Мы знаем, что [latex] \ cos t [/ latex] — это координата x соответствующей точки на единичном круге, а [latex] \ sin t [/ latex] — это координата y соответствующей точки. точка на единичной окружности. Итак: [латекс] \ begin {align} x & = \ cos t = \ frac {1} {2} \\ y & = \ sin t = \ frac {\ sqrt {3}} {2} \ end {align} [/ латекс] Определенный угол [латекс] t [/ латекс] соответствует точке на единичной окружности в [латекс] \ left (- \ frac {\ sqrt {2}} {2}, \ frac {\ sqrt {2}} {2} \ right) [/ latex], как показано на рисунке 5.Найдите [latex] \ cos t [/ latex] и [latex] \ sin t [/ latex]. Рисунок 5 [латекс] \ cos \ left (t \ right) = — \ frac {\ sqrt {2}} {2}, \ sin \ left (t \ right) = \ frac {\ sqrt {2}} {2} [/ латекс] Для квадрантных углов соответствующая точка единичной окружности попадает на ось x- или y . {2} t = 1 [/ латекс] Если [латекс] \ sin \ left (t \ right) = \ frac {3} {7} [/ latex] и [latex] t [/ latex] находится во втором квадранте, найдите [latex] \ cos \ left (т \ справа) [/ латекс].{2} \ left (t \ right) = \ frac {40} {49} \\ \ text {cos} \ left (t \ right) = \ pm \ sqrt {\ frac {40} {49}} = \ pm \ frac {\ sqrt {40}} {7} = \ pm \ frac {2 \ sqrt {10}} {7} \ end {gather} [/ latex] Поскольку угол находится во втором квадранте, мы знаем, что значение x- является отрицательным действительным числом, поэтому косинус также отрицателен. \ circ [/ latex] или [latex] \ frac {\ pi} {4} [/ latex], как показано на рисунке 9.Треугольник \ circ [/ latex] — это равнобедренный треугольник, поэтому координаты x- и y соответствующей точки на окружности совпадают. Поскольку значения x- и y одинаковы, значения синуса и косинуса также будут равны. Рисунок 9 При [latex] t = \ frac {\ pi} {4} [/ latex], что составляет 45 градусов, радиус единичной окружности делит пополам угол первого квадранта . Это означает, что радиус лежит вдоль линии [латекс] y = x [/ latex].{2} = \ frac {1} {2} \\ x = \ pm \ frac {1} {\ sqrt {2}} \ end {gather} [/ latex] В квадранте I [латекс] x = \ frac {1} {\ sqrt {2}} [/ latex]. При [латексе] t = \ frac {\ pi} {4} [/ latex] или 45 градусах, [латекс] \ begin {собранный} \ left (x, y \ right) = \ left (x, x \ right) = \ left (\ frac {1} {\ sqrt {2}}, \ frac {1} {\ sqrt {2}} \ right) \\ x = \ frac {1} {\ sqrt {2}}, y = \ frac {1} {\ sqrt {2}} \\ \ cos t = \ frac { 1} {\ sqrt {2}}, \ sin t = \ frac {1} {\ sqrt {2}} \ end {gather} [/ latex] Если мы затем рационализируем знаменатели, мы получим [латекс] \ begin {align} \ cos t & = \ frac {1} {\ sqrt {2}} \ frac {\ sqrt {2}} {\ sqrt {2}} = \ frac {\ sqrt {2} } {2} \\ \ sin t & = \ frac {1} {\ sqrt {2}} \ frac {\ sqrt {2}} {\ sqrt {2}} = \ frac {\ sqrt {2}} {2 } \ end {align} [/ latex] Следовательно, [латекс] \ left (x, y \ right) [/ latex] координаты точки на окружности радиусом [латекс] 1 [/ latex] под углом [латекс] 45 ^ \ circ [/ latex] — это [латекс] \ left (\ frac {\ sqrt {2}} {2}, \ frac {\ sqrt {2}} {2} \ right) [/ latex].\ circ [/ latex], как показано на рисунке 12. Рисунок 11 Рисунок 12 Поскольку все углы равны, стороны также равны. Вертикальная линия имеет длину [латекс] 2y [/ latex], и поскольку все стороны равны, мы также можем сделать вывод, что [latex] r = 2y [/ latex] или [latex] y = \ frac {1} {2 } г [/ латекс]. Поскольку [латекс] \ sin t = y [/ latex], [латекс] \ sin \ left (\ frac {\ pi} {6} \ right) = \ frac {1} {2} r [/ latex] А так как [latex] r = 1 [/ latex] в нашем единичном круге , [латекс] \ begin {align} \ sin \ left (\ frac {\ pi} {6} \ right) = \ frac {1} {2} \ left (1 \ right) = \ frac {1} {2 } \ end {align} [/ latex] Используя тождество Пифагора, мы можем найти значение косинуса.\ circ [/ латекс]. Теперь у нас есть равносторонний треугольник. Поскольку каждая сторона равностороннего треугольника [латекс] ABC [/ латекс] имеет одинаковую длину, и мы знаем, что одна сторона является радиусом единичного круга, все стороны должны иметь длину 1. Рисунок 13 Угол наклона [латекс] ABD [/ латекс] составляет 30 °. Так, если двойной, угол [латекс] ABC [/ латекс] равен 60 °. [latex] BD [/ latex] — это серединный перпендикуляр к [latex] AC [/ latex], поэтому он разрезает [latex] AC [/ latex] пополам. Это означает, что [latex] AD [/ latex] — это [latex] \ frac {1} {2} [/ latex] радиус или [latex] \ frac {1} {2} [/ latex].\ circ [/ latex] — это [латекс] \ left (\ frac {1} {2}, \ frac {\ sqrt {3}} {2} \ right) \ [/ latex], поэтому мы можем найти синус и косинус. [латекс] \ begin {собранный} \ left (x, y \ right) = \ left (\ frac {1} {2}, \ frac {\ sqrt {3}} {2} \ right) \\ x = \ frac {1} {2}, y = \ frac {\ sqrt {3}} {2} \\ \ cos t = \ frac {1} {2}, \ sin t = \ frac {\ sqrt {3} } {2} \ end {gather} [/ latex] Теперь мы нашли значения косинуса и синуса для всех наиболее часто встречающихся углов в первом квадранте единичной окружности. В таблице ниже приведены эти значения. На рисунке 14 показаны общие углы в первом квадранте единичной окружности. Рисунок 14 Чтобы найти косинус и синус углов, отличных от специальных углов , мы обращаемся к компьютеру или калькулятору. Обратите внимание : Большинство калькуляторов можно установить в режим «градус» или «радиан», который сообщает калькулятору единицы для входного значения. Когда мы вычисляем [латекс] \ cos \ left (30 \ right) [/ latex] на нашем калькуляторе, он будет оценивать его как косинус 30 градусов, если калькулятор находится в режиме градусов, или косинус 30 радиан, если калькулятор находится в радианном режиме. Вычислить [латекс] \ cos \ left (\ frac {5 \ pi} {3} \ right) [/ latex] с помощью графического калькулятора или компьютера.\ circ [/ latex], например, включив коэффициент преобразования в радианы как часть входных данных: SIN (20 × π ÷ 180) ВВОД Вычислить [латекс] \ sin \ left (\ frac {\ pi} {3} \ right) [/ latex]. приблизительно 0,866025403 Теперь, когда мы можем найти синус и косинус угла, нам нужно обсудить их области и диапазоны.Каковы области определения функций синуса и косинуса? То есть, какие наименьшие и наибольшие числа могут входить в функции? Поскольку углы меньше 0 и углы больше [латекс] 2 \ pi [/ latex] все еще могут быть нанесены на единичный круг и имеют реальные значения [latex] x, y [/ latex] и [latex] r [/ latex], не существует нижнего или верхнего предела углов, которые могут входить в функции синуса и косинуса. Входными данными для функций синуса и косинуса является поворот от положительной оси x , и это может быть любое действительное число. Каковы диапазоны функций синуса и косинуса? Каковы наименьшие и наибольшие возможные значения их производительности? Мы можем увидеть ответы, исследуя единичную окружность , как показано на рисунке 15. Границы координаты x равны [латекс] \ влево [-1,1 \ вправо] [/ латекс]. Границы координаты y также являются [latex] \ left [-1,1 \ right] [/ latex]. Следовательно, диапазон функций синуса и косинуса равен [latex] \ left [-1,1 \ right] [/ latex]. Рисунок 15 Мы обсудили нахождение синуса и косинуса для углов в первом квадранте, но что, если наш угол находится в другом квадранте? Для любого заданного угла в первом квадранте существует угол во втором квадранте с тем же значением синуса.Поскольку значение синуса является координатой y на единичной окружности, другой угол с таким же синусом будет иметь то же значение y , но будет иметь противоположное значение x . Следовательно, его значение косинуса будет противоположным значению косинуса первого угла. Аналогично, в четвертом квадранте будет угол с таким же косинусом, что и исходный угол. Угол с таким же косинусом будет иметь то же значение x , но будет иметь противоположное значение y .Следовательно, его значение синуса будет противоположным значению синуса исходного угла. Как показано на рисунке 16, угол [латекс] \ альфа [/ латекс] имеет то же значение синуса, что и угол [латекс] t [/ латекс]; значения косинуса противоположны. Угол [латекс] \ бета [/ латекс] имеет то же значение косинуса, что и угол [латекс] t [/ латекс]; значения синуса противоположны. [латекс] \ begin {array} {ccc} \ sin \ left (t \ right) = \ sin \ left (\ alpha \ right) \ hfill & \ text {и} \ hfill & \ cos \ left (t \ right) = — \ cos \ left (\ alpha \ right) \ hfill \\ \ sin \ left (t \ right) = — \ sin \ left (\ beta \ right) \ hfill & \ text {и} \ hfill & \ cos \ left (t \ right) = \ cos \ left (\ beta \ right) \ hfill \ end {array} [/ latex] Рисунок 16 Напомним, что опорный угол угла — это острый угол [латекс] t [/ латекс], образованный конечной стороной угла [латекс] t [/ латекс] и горизонтальной осью. \ circ \ mathrm {-t} | [/ latex].\ circ [/ latex] Найдите опорный угол [латекса] \ frac {5 \ pi} {3} [/ latex]. [латекс] \ frac {\ pi} {3} [/ латекс] А теперь давайте вернемся к колесу обозрения, представленному в начале этого раздела. Предположим, всадник делает снимок, остановившись на высоте двадцати футов над уровнем земли. Затем всадник совершает поворот на три четверти по кругу. Какая у всадника новая высота? Чтобы ответить на такие вопросы, как этот, нам нужно оценить функции синуса или косинуса при углах больше 90 градусов или при отрицательном угле .Базовые углы позволяют оценивать тригонометрические функции для углов вне первого квадранта. Их также можно использовать для поиска координат [latex] \ left (x, y \ right) [/ latex] для этих углов. Мы будем использовать опорный угол угла поворота в сочетании с квадрантом, в котором находится конечная сторона угла. Мы можем найти косинус и синус любого угла в любом квадранте, если мы знаем косинус или синус его опорного угла.Абсолютные значения косинуса и синуса угла такие же, как и у опорного угла. Знак зависит от квадранта исходного угла. Косинус будет положительным или отрицательным в зависимости от знака значений x в этом квадранте. Синус будет положительным или отрицательным в зависимости от знака значений y в этом квадранте. Углы имеют косинусы и синусы с тем же абсолютным значением, что и их опорные углы.Знак (положительный или отрицательный) можно определить по квадранту угла. Уравнение общего косинуса
cos (x) | функция косинуса
Определение косинуса
Пример
График косинуса
Правила косинуса
Название правила Правило Симметрия cos (- θ ) = cos θ Симметрия cos (90 ° — θ ) = sin θ Пифагорейская идентичность sin 2 (α)
+ cos 2 (α) = 1 cos θ = sin θ / tan θ cos θ = 1 / сек θ Двойной угол cos 2 θ = cos 2 θ — грех 2 θ Сумма углов cos ( α + β ) = cos α cos β — sin α sin β Разница углов cos ( α-β ) = cos α cos β + sin α грех β Сумма к продукту cos α + cos β = 2 cos
[( α + β ) / 2] cos [( α-β ) / 2] Отличие от продукта cos α — cos β = — 2 sin
[( α + β ) / 2]
sin [( α-β ) / 2] Закон косинусов Производная cos ‘ x = — sin x Интегральный ∫ cos x d x = sin x + C Формула Эйлера cos x = ( e ix + e — ix ) / 2 Функция обратного косинуса
Пример
Таблица косинусов
x x cos x 180 ° π -1 150 ° 5π / 6 -√3 / 2 135 ° 3π / 4 -√2 / 2 120 ° 2π / 3 -1/2 90 ° π / 2 0 60 ° π / 3 1/2 45 ° π / 4 √2 / 2 30 ° π / 6 √3 / 2 0 ° 0 1 См. Также
Функция косинуса
косинусов
Угол Градусов Радианы Косинус синус 90 ° π /2 0 1 /3 1/2 √3 / 2 45 ° π /4 √2 / 2 √2 / 2 30 ° π /6 √3 / 2 1/2 0 ° 0 1 0 Упражнения
Все эти упражнения относятся к прямоугольным треугольникам со стандартной маркировкой. Подсказки
ответов
c = 3 a , что равно 12.73 ‘или 12’9 «.
a 2 = 7,8 2 — 6,4 2 = 19,9, поэтому a составляет около 4,5.
b = c cos A = 12,15 cos 23 ° 15 ‘= 11.17. Cosine — определение математического слова
Cosine — определение математического слова — Math Open Reference В
прямоугольный треугольник,
косинус угла — это длина смежной стороны (A), деленная на длину
гипотенуза (H). Попробуй это
Перетащите любой
вершину треугольника и посмотрите, как вычисляются косинусы A и C.
(Если нет — убедитесь, что калькулятор настроен на работу в градусах, а не
радианы). Пример — использование косинуса для нахождения гипотенузы
Функция обратного косинуса — arccos
cos60 = 0,5 Означает: косинус 60 градусов равен 0,5 arccos0.5 = 60 Означает: угол, косинус которого равен 0,5, равен 60 градусам. Большие и отрицательные углы
Построение функции косинуса
Производная cos (x)
Все права защищены. Единичный круг: функции синуса и косинуса
Результаты обучения
A Общее примечание: Unit Circle
Определение функций синуса и косинуса
Общее примечание: функции синуса и косинуса
Как сделать: по точке
P [латекс] \ left (x, y \ right) [/ latex] на единичной окружности, соответствующей углу [латекс] t [/ latex], найдите синус и косинус. Пример 1: Поиск значений функции для синуса и косинуса
Попробуй
Нахождение синусов и косинусов углов на оси
Как сделать: учитывая синус некоторого угла [латекс] t [/ latex] и его положение в квадранте, найдите косинус [latex] t [/ latex].
Пример 3: Нахождение косинуса из синуса или синуса из косинуса
Угол 0 [латекс] \ frac {\ pi} {6} [/ latex], или 30 ° [латекс] \ frac {\ pi} {4} [/ latex], или 45 ° [латекс] \ frac {\ pi} {3} [/ latex], или 60 ° [латекс] \ frac {\ pi} {2} [/ latex], или 90 ° Косинус 1 [латекс] \ frac {\ sqrt {3}} {2} [/ латекс] [латекс] \ frac {\ sqrt {2}} {2} [/ латекс] [латекс] \ frac {1} {2} [/ латекс] 0 Синус 0 [латекс] \ frac {1} {2} [/ латекс] [латекс] \ frac {\ sqrt {2}} {2} [/ латекс] [латекс] \ frac {\ sqrt {3}} {2} [/ латекс] 1 Использование калькулятора для определения синуса и косинуса
Как сделать: если задан угол в радианах, используйте графический калькулятор, чтобы найти косинус.
Пример 4: Использование графического калькулятора для поиска синуса и косинуса
Попробуй
Определение области и диапазона функций синуса и косинуса
Попробуй
Использование опорных углов
Использование опорных углов для оценки тригонометрических функций
Общее примечание: использование опорных углов для определения косинуса и синуса
Как: для заданного угла в стандартном положении найдите опорный угол, а также косинус и синус исходного угла.
[латекс] \ cos \ frac {5 \ pi} {4} = — \ frac {\ sqrt {2}} {2} \ text {и} \ sin \ frac {5 \ pi} {4} = — \ гидроразрыв {\ sqrt {2}} {2} [/ latex]
Попробуй
а.\ circ \ right) = \ frac {- \ sqrt {2}} {2} [/ latex]
б. [латекс] \ cos \ left (- \ frac {\ pi} {6} \ right) = \ frac {\ sqrt {3}} {2}, \ sin \ left (- \ frac {\ pi} {6} \ right) = — \ frac {1} {2} [/ latex]
Использование опорных углов для поиска координат
Теперь, когда мы узнали, как находить значения косинуса и синуса для особых углов в первом квадранте, мы можем использовать симметрию и опорные углы, чтобы заполнить значения косинуса и синуса для остальных особых углов единичной окружности. Они показаны на рисунке 19.Найдите время, чтобы узнать координаты [latex] \ left (x, y \ right) [/ latex] всех основных углов в первом квадранте.
Помимо изучения значений специальных углов, мы можем использовать опорные углы, чтобы найти координаты [latex] \ left (x, y \ right) [/ latex] любой точки на единичной окружности, используя то, что мы знаем об опорных углах вместе с удостоверениями
[латекс] \ begin {собрано} x = \ cos t \\ y = \ sin t \ end {собрано} [/ latex]
Сначала мы находим опорный угол, соответствующий данному углу.Затем мы берем значения синуса и косинуса опорного угла и даем им знаки, соответствующие значениям квадранта y, и x .
Как сделать: учитывая угол точки на окружности и радиус окружности, найдите координаты [latex] \ left (x, y \ right) [/ latex] точки.
- Найдите опорный угол, измерив наименьший угол к оси x .
- Найдите косинус и синус опорного угла.
- Определите соответствующие знаки для [латекс] x [/ латекс] и [латекс] y [/ латекс]
в данном квадранте.
Пример 7: Использование единичной окружности для поиска координат
Найдите координаты точки на единичной окружности под углом [латекс] \ frac {7 \ pi} {6} [/ latex].
Показать решениеМы знаем, что угол [латекс] \ frac {7 \ pi} {6} [/ latex] находится в третьем квадранте.
Во-первых, давайте найдем опорный угол, измерив угол к оси x .Чтобы найти опорный угол угла, конечная сторона которого находится в квадранте III, мы находим разность угла и [латекс] \ pi [/ латекс].
[латекс] \ frac {7 \ pi} {6} — \ pi = \ frac {\ pi} {6} [/ latex]
Затем находим косинус и синус опорного угла:
[латекс] \ begin {gather} \ cos \ left (\ frac {\ pi} {6} \ right) = \ frac {\ sqrt {3}} {2} \\ \ sin \ left (\ frac {\ pi} {6} \ right) = \ frac {1} {2} \ end {gather} [/ latex]
Мы должны определить соответствующие знаки для x и y в данном квадранте.Поскольку наш исходный угол находится в третьем квадранте, где оба [latex] x [/ latex] и [latex] y [/ latex] отрицательны, косинус и синус отрицательны.
[латекс] \ begin {gather} \ cos \ left (\ frac {7 \ pi} {6} \ right) = — \ frac {\ sqrt {3}} {2} \\ \ sin \ left (\ frac {7 \ pi} {6} \ right) = — \ frac {1} {2} \ end {gather} [/ latex]
Теперь мы можем вычислить координаты [latex] \ left (x, y \ right) [/ latex], используя тождества [latex] x = \ cos \ theta [/ latex] и [latex] y = \ sin \ theta [ /латекс].
Координаты точки: [latex] \ left (- \ frac {\ sqrt {3}} {2}, — \ frac {1} {2} \ right) [/ latex] на единичной окружности.{2} t = 1 [/ латекс]
Ключевые понятия
- Нахождение значений функции для синуса и косинуса начинается с рисования единичной окружности с центром в начале координат и радиусом 1 единица.
- Используя единичную окружность, синус угла [латекс] t [/ latex] равен значению y конечной точки на единичной окружности дуги длиной [латекс] t [/ латекс], тогда как косинус угол [latex] t [/ latex] равен x -значению конечной точки.
- Значения синуса и косинуса наиболее точно определяются, когда соответствующая точка единичной окружности попадает на ось.
- Когда синус или косинус известен, мы можем использовать пифагорову тождество, чтобы найти другое. Пифагорейская идентичность также полезна для определения синусов и косинусов особых углов.
- Калькуляторы и программное обеспечение для построения графиков полезны для поиска синусов и косинусов, если известна правильная процедура ввода информации.
- Все функции синуса и косинуса являются действительными числами.
- Диапазон функций синуса и косинуса: [latex] \ left [-1,1 \ right] [/ latex].
- Синус и косинус угла имеют то же абсолютное значение, что и синус и косинус его опорного угла.
- Знаки синуса и косинуса определяются из значений x и y в квадранте исходного угла.
- Опорный угол угла — это размерный угол [латекс] t [/ латекс],
, образованный конечной стороной угла [латекс] t [/ латекс] и горизонтальной осью. - Опорные углы можно использовать для определения синуса и косинуса исходного угла.
- Опорные углы также можно использовать для определения координат точки на окружности.
Глоссарий
- функция косинуса
- значение x точки на единичной окружности, соответствующее заданному углу
- Пифагорейская идентичность
- является следствием теоремы Пифагора, утверждающей, что квадрат косинуса заданного угла плюс квадрат синуса этого угла равняется 1
- синусоидальная функция
- значение y точки на единичной окружности, соответствующее заданному углу
- единичный круг
- круг с центром в [латекс] \ влево (0,0 \ вправо) [/ латекс]
и радиусом
Синус и косинус объяснены визуально
Синус и косинус объяснены визуальноРазъяснение визуально
Виктор Пауэлл
с текстом Льюиса Лехе
Синус и косинус — a.k.a., sin (θ) и cos (θ) — функции, раскрывающие форму прямоугольного треугольника. Если смотреть из вершины с углом θ, sin (θ) — это отношение противоположной стороны к гипотенузе, а cos (θ) — это отношение соседней стороны к гипотенузе. Независимо от размера треугольника, значения sin (θ) и cos (θ) одинаковы для данного θ, как показано ниже.
Посмотрите на крайний левый рисунок выше (единичный круг). Гипотенуза треугольника имеет длину 1, поэтому (удобно!) Отношение его смежности к его гипотенузе равно cos (θ), а отношение его противоположности к гипотенузе равно sin (θ).Следовательно, поместив треугольники в точку (0,0) плоскости x / y, можно найти функции sin (θ) и cos (θ), записав значения x и y для каждого θ. Нажмите ниже, чтобы увидеть, как разворачивается этот процесс. Углы указаны в радианах (т. Е. Π / 4, π / 2, …).
Конечно, компьютеры и калькуляторы на самом деле не рисуют круги, чтобы найти синус и косинус. Вместо этого они используют приближения, подобные ряду Тейлора: \ [\ begin {выровнено} \ sin {\ theta} = θ — \ frac {\ theta ^ 3} {3!} + \ frac {\ theta ^ 5} {5!} — \ frac {\ theta ^ 7} {7!} \ cdots \ \ \ cos {\ theta} = 1 — \ frac {\ theta ^ 2} {2!} + \ frac {\ theta ^ 4} {4!} — \ frac {\ theta ^ 6} {6!} \ cdots \ конец {выровнено} \]
Используя синус и косинус, можно описать любую точку (x, y) как альтернативу, точку (r, θ), где r — длина сегмента от (0,0) до точки, а θ — угол между этим сегментом и осью абсцисс.Это называется полярной системой координат, и правило преобразования: (x, y) = (rcos (θ), rsin (θ)). Поиграйте с рисунками ниже, чтобы увидеть преобразование в реальном времени между декартовыми (т.е. координатами x / y) и полярными координатами.
Для получения дополнительных объяснений посетите домашнюю страницу проекта «Визуальное объяснение».
Или подпишитесь на нашу рассылку.
Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus. комментарии предоставлены .