Коллекторный двигатель — что это? :: SYL.ru
С давних времен люди поняли, что если не хочешь лично прилагать к чему-то усилие, то необходимо найти себе замену. Так, телеги тянули лошади, на мельницах работали ослики, а корабли по морю гнал ветер. Но с того времени много воды уплыло, и люди даже смогли придумать кое-что современней. И таким чем-то современным является коллекторный двигатель, о котором и будет идти речь. Будут рассмотрены разновидности, схематический вид, методы регулировки количества оборотов, а также достоинства и недостатки при их эксплуатации.
Что называют коллекторным двигателем?
Коллекторным двигателем называется электрическая машина, датчик положения ротора и переключатель тока в которой — это одно и то же устройство, называемое щеточно-коллекторным узлом. Про последний можно рассказать дополнительно. Он обеспечивает электрическое соединение цепей в неподвижной части машины с цепями ротора. Конструктивно он состоит из щеток (под ними понимаются скользящие контакты, которые расположены вокруг вращающейся части двигателя) и коллектора (то, что находится на движимом элементе механизма).

К общим достоинствам можно отнести то, что коллекторный двигатель прост в изготовлении и эксплуатации, имеет значительный ресурс использования и легко может быть отремонтирован. К общим недостаткам причисляют то, что они имеют малую массу и большой коэффициент полезного действия. В большинстве случаев это только плюс, но не сейчас. Так, соединение низкой массы и быстроходности (которая достигает сотен и тысяч оборотов в минуту) приводит к тому, что для нормальной работы почти всегда требуются редукторы. А при перестройке на низкую скорость машина имеет пониженный КПД, и возникают проблемы с охлаждением. Пока изящного решения этой проблемы найти не удалось.
Разновидности коллекторного двигателя
Существует два основных типа, каждый из них имеет свои преимущества и особенности. Очень распространёнными и разнообразными являются коллекторные электродвигатели постоянного тока. Их конструкции можно поделить на такие подтипы:
- Самые слабые, рабочее напряжение которых 3-9 Вольт, и которые применяются в детских игрушках. Имеют двухполюсной статор, в котором установлены постоянные магниты. Коллекторный узел сконструирован из двух щеток, в качестве которых обычно применяются медные пластины. В отличие от статора, у этих двигателей ротор имеет три полюса. Установлен он на подшипники скольжения. Мощность таких механизмов измеряется в нескольких единицах Ватт.
- Средние двигатели имеют рабочее напряжение 12 или 24 вольта. Используются в автомобилях, рабочих станках, в вентиляционных системах охлаждения. Генерируют мощность в несколько десятков ватт. Имеют многополюсной ротор, который работает уже на подшипниках качения. Коллекторный узел состоит из 4 щеток (как правило, уже графитовых). Статор имеет четыре полюса, но состоит все так же из постоянных магнитов.
- Существуют ещё двигатели, которые могут генерировать мощность, которая исчисляется сотнями Ватт. Единственное отличие от конструкции, описанной в пункте 2, состоит в том, что для статора используются электромагниты.

Но кроме таких представителей есть ещё универсальные коллекторные электродвигатели. Их особенность в том, что они могут работать как на постоянном, так и на переменном токе. Используются они в электроинструментах, бытовой технике и железнодорожном транспорте в составах, которые ездят благодаря электровозам. Их распространенность объясняется малым размером и весом, относительно низкой ценой и возможностью легко отрегулировать количество оборотов. Благодаря тому что это коллекторный двигатель переменного тока, он может работать и с нестабильными источниками энергии в разумных границах.
Схематический вид коллекторного двигателя
Одной общепринятой схемы нет. То, что вы видите, это всего один из вариантов. Схема коллекторного двигателя может быть построена так, как захочется. Есть только требования к тому, что должно быть в рамках рабочего чертежа: статор и ротор. Коллекторный двигатель переменного тока также должен оснащаться предохранителем, который не позволит ему сгореть.

Как регулировать количество оборотов?
Изменения возможны, если используется регулятор оборотов коллекторного двигателя. Различие количества подаваемой электроэнергии может изменить их количество всего на 10 процентов, плюс-минус. Тогда как регулятор оборотов коллекторного двигателя позволяет уменьшать их в разы, и его можно сделать самому или купить. И в любом случае вам необходимо проверить, сможет ли он работать в механизме такой мощности и таких оборотов (сначала теоретически, а потом и на практике). Ведь если регулятор будет слишком слабым, то выйти из строя для него будет плевым делом.

Достоинства и недостатки
Достоинства, которые имеет коллекторный двигатель:
- Малый пусковой ток, что желательно для бытовых устройств.
- Универсальные двигатели могут включаться в сеть напрямую, без выпрямления. Но это относится только к ним. Двигатели постоянного тока требуют выпрямления.
- Легче сделать управляющую схему.
- Быстроходность.
- Больший пусковой момент.
- Компактность схемы даже с использование редуктора.
Недостатки:
- Нестабильное значение мощности, которое дают обороты коллекторного двигателя, когда изменяется нагрузка.
- Относительно малая надежность и срок службы.
- Из-за потерь индуктивности и перемагничивания статора может понижаться КПД.

Безколлекторный аналог
По механической характеристике самым близким является вентильный электродвигатель. В нём главным является инвертор, а не щеточно-коллекторный узел. Но общим недостатком этой конструкции является более низкий максимальный момент при одинаковых габаритах.
www.syl.ru
Коллекторный электродвигатель — это… Что такое Коллекторный электродвигатель?
Колле́кторный электродвигатель — синхронная[1]электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
Разновидности
Коллекторный электродвигатель постоянного тока
Самые маленькие двигатели данного типа (единицы ватт) содержат в корпусе:
- трёхполюсной ротор на подшипниках скольжения;
- коллекторный узел из двух щеток — медных пластин;
- двухполюсной статор из постоянных магнитов.
Применяются, в основном, в детских игрушках (рабочее напряжение 3–9 вольт).
Более мощные двигатели (десятки ватт), как правило, имеют
- много-полюсный ротор на подшипниках качения;
- коллекторный узел из четырёх графитовых щёток;
- четырёхполюсный статор из постоянных магнитов.
Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 вольт): привод вентиляторов систем охлаждения и вентиляции, дворников, насосов омывателей.
Двигатели мощностью в сотни ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Обмотки статора могут подключаться несколькими способами:
- последовательно с ротором (так называемое последовательное возбуждение),
- преимущество: большой максимальный момент,
- недостаток: большие обороты холостого хода, способные повредить двигатель.
- параллельно с ротором (параллельное возбуждение)
- преимущество: большая стабильность оборотов при изменении нагрузки,
- недостаток: меньший максимальный момент
- часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение)
- до некоторой степени совмещает достоинства предыдущих типов. Пример — автомобильные стартёры.
- отдельным источником питания (независимое возбуждение)
- характеристика аналогична параллельному подключению, однако обычно может регулироваться. Применяется редко.
Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы. Это утверждение не вполне верно, но обоснованно. Электрическая машина, построенная на низкую скорость, вообще имеет заниженный КПД и связанные с ним проблемы охлаждения. Скорее всего проблема лежит так, что изящных решений для нее нет.
Универсальный коллекторный электродвигатель
Схема одного из вариантов УКД. Допускается работа и от постоянного, и от переменного токаУниверсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговая машина.
Особенности конструкции
Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление против направленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М.П. Костенко, Электрические машины). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, 25 Гц в США. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М.П. Костенко Электрические машины, электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов. (Цитата со слов источника: «У Них асимметрия магнитной системы — доли миллиметра, у нас — доли сантиметра. У Нас щетки машины — крашенный кирпич, у них — процесс высоких технологий (это лекционный материал И.Б. Битюцкий, Липецкий политехнический университет специальность электрические машины) [источник?]).
Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (к.м.п.т.) являются машины «пульсирующего тока», полученного путем выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога). Здесь стоит отметить разность в культуре электротехнической промышленности — если Европа выбрала чистую коллекторною машину, то СССР предпочел «гибрид бульдога с носорогом» — машину, где ток не менял полярность, но колебался от нуля до максимума. (И.Б. Битюцкий, Липецкий политехничский университет).
Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3–5 от номинального (против 5–10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.
Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет свое направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В к. м. п. т. реактивная ЭДС. также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Ее амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратиться в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации к.м.п.т. может быть решена следующим образом:
- Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
- Увеличение активного сопротивления секции. Наиболее перспективными по данным М.П.Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
- Активная подшлифовка коллектора щетками максимальной твердости (высокий износ) и максимально возможного сопротивления.
- Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС. и паралельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчиненного регулирования, не разработанной по сегодняшний день.
- Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.
Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.
Достоинства и недостатки
Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт 50 Гц. и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.
Достоинства в сравнении с коллекторным двигателем постоянного тока:
- Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
- Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
- Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.
Недостатки в сравнении с коллекторным двигателем постоянного тока:
- Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
- Меньший максимальный момент (может быть недостатком).
Достоинства в сравнении асинхронным двигателем:
- Быстроходность и отсутствие привязки к частоте сети.
- Компактность (даже с учётом редуктора).
- Больший пусковой момент.
- Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
- Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.
Недостатки в сравнении с асинхронным двигателем:
- Нестабильность оборотов при изменении нагрузки (где это имеет значение).
- Наличие щёточно-коллекторного узла и в связи с этим:
- Относительно малая надёжность (срок службы. Тяжелые условия коммутации обуславливают использование максимально твердых щеток, что снижает ресурс.
- Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи
- Высокий уровень шума
- Относительно большое число деталей коллектора (и соответственно двигателя)
Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.
Сравнение с асинхронным двигателем
Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:
- УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
- Асинхронный двигатель — «вентиляторная» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном снижении оборотов (единицы процентов). При значительном снижении оборотов (до точки критического момента) момент двигателя не только не растёт, а падает до нуля, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
- Однофазный асинхронный двигатель предлагает дополнительный «букет» проблем, связанных с запуском, т.к. в нормальных условиях пускового момента не развивает. Пульсирующее во времени магнитное поле однофазного статора математически разлагается на два противофазных поля, делающих невозможным пуск без различных ухищрений:
- расщепленный паз
- создающая искусственною фазу емкость
- создающую искусственною фазу активное сопротивление
Вращающееся в противофазе поле теоретически снижает максимальный КПД однофазного асинхронного двигателя до 50–60 % из-за потерь в перенасыщенной магнитной системе и активных потерь в обмотках, которые нагружаются токами «противополя». Фактически, на одном валу «сидят» две электрические машины, одна из которых работает в двигательном режиме, а вторая — в режиме противовключения.
Таким образом, в однофазных сетях к.м.п.т. не знает себе конкурентов.
Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.
Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).
Аналоги без коллекторного узла
Ближайшим аналогом УКД по механической харатеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).
Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).
Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.
См. также
Примечания
dic.academic.ru
Бесколлекторный двигатель постоянного тока: принцип работы, устройство, применение
Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.
Общие сведения, устройство, сфера применения
Одна из причин проявления интереса к БД – это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.
Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Принцип работы
В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.

Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Как запустить бесколлекторный двигатель?
Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:
- Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
- Максимальная величина штатного напряжения для продолжительной работы.
- Сопротивление внутренних цепей контроллера.
- Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
- Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.
Обратим внимание, что первые три характеристики определяют мощность БД.
Управление бесколлекторным двигателем
Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.
Трёхфазный бесколлекторный электродвигатель постоянного тока
Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:
- На катушки «А» подается положительный импульс, в то время как на «В» – отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
- Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
- На «С» – положительный, «А» – отрицательный.
- Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
- Положительный импульс повторно подается на «В», и отрицательный на «С».
- Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.
В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Преимущества и недостатки
Электрический бесколлекторный двигатель имеет много достоинств, а именно:
- Срок службы значительно дольше, чем у обычных коллекторных аналогов.
- Высокий КПД.
- Быстрый набор максимальной скорости вращения.
- Он более мощный, чем КД.
- Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
- Не требуется дополнительное охлаждение.
- Простая эксплуатация.
Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.
www.asutpp.ru
Универсальный коллекторный двигатель — это… Что такое Универсальный коллекторный двигатель?
Схема одного из вариантов УКД. Допускается работа и от постоянного, и от переменного токаУниверсальный коллекторный двигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены.
Особенности конструкции
Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.
Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.
Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.
Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.
Достоинства и недостатки
Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.
Достоинства в сравнении с коллекторным двигателем постоянного тока:
- Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
- Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
- Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.
Недостатки в сравнении с коллекторным двигателем постоянного тока:
- Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
- Меньший максимальный момент (может быть недостатком).
Достоинства в сравнении асинхронным двигателем:
- Быстроходность и отсутствие привязки к частоте сети.
- Компактность (даже с учётом редуктора).
- Больший пусковой момент.
- Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
- Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.
Недостатки в сравнении с асинхронным двигателем:
- Нестабильность оборотов при изменении нагрузки (где это имеет значение).
- Наличие щёточно-коллекторного узла и в связи с этим:
- Относительно малая надёжность (срок службы)
- Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи
- Высокий уровень шума
- Относительно большое число деталей коллектора (и соответственно двигателя)
Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.
Сравнение с асинхронным двигателем
Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:
- УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
- Асинхронный двигатель — «жёсткая» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном снижении оборотов (единицы процентов). При значительном снижении оборотов (до полного торможения) момент двигателя не растёт, а даже падает, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.
Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).
Аналоги без коллекторного узла
Ближайшим аналогом УКД по механической харатеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).
Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).
Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.
Применение
Ручной электроинструмент:
Бытовая техника:
См. также
Ссылки
dic.academic.ru
Как работает коллекторный двигатель со щеточным механизмом в бытовой технике

Пылесос, кофемолка, дрель, перфоратор, триммер — далеко не полный перечень оборудования, в котором используется преобразование электрической энергии в механическую для работы бытовых устройств.
Они содержат сложные технические узлы, требуют умелого обращения, периодического осмотра, правильного обслуживания. При небрежной работе возникают различные поломки.
Материал статьи представляет советы домашнему мастеру, работающему с электрическими инструментами или планирующему самостоятельный ремонт электродвигателя с щеточным механизмом и коллектором. Текст наглядно дополняется схемами, картинками и видеороликом.
Предоставленная информация собрана с целью привлечь внимание пользователей к правилам эксплуатации бытовых приборов с коллекторным двигателем. Она поможет осознанно фиксировать возникающие дефекты работающей схемы, оперативно устранять их.
Содержание статьи
Компоновка и принцип работы
Подвижная часть коллекторного двигателя, как и любого другого, механически сбалансирована и закреплена в подшипниках вращения, вмонтированных в неподвижную станину.
Стационарный статор и вращающийся ротор имеют собственные обмотки из изолированного провода. По ним протекает электрический ток, создающий магнитные поля со своими полюсами: северным N и южным S.
При взаимодействии этих двух электромагнитных полей создается вращение ротора.
Поскольку к обеим обмоткам необходимо постоянно подводить напряжение, а ротор вращается, то для него смонтировано специальное устройство: коллектор с щеточным механизмом.
Электрическая схема
Для практических работ удобно пользоваться двумя видами ее представления:
- упрощенным;
- более подробным.
Упрощенное отображение
Способ позволяет очень просто представить подключение всех обмоток двигателя к схеме электрической сети.
Выключатель разрывает оба потенциала фазы и нуля или один из них. Через щетки с коллектором создается цепь тока по обмоткам ротора.
Принципиальная схема
В зависимости от конструктивных особенностей обмотки статора и ротора могут иметь дополнительные отводы для питания различных устройств управления и автоматики коллекторного двигателя или обходиться без них.
Термозащита исключает перегревание изоляции обмоток двигателя. Она снимает напряжение питания при срабатывании датчика, останавливая вращение ротора и исполнительного механизма.
Тахогенератор позволяет судить о скорости вращения ротора. У отдельных двигателей его заменяют датчиком Холла. Для передачи сигналов к этим устройствам тоже используются контакты коллекторных пластин.
Проблемные места конструкции
Чаще всего неисправности могут возникнуть в:
- подшипниках:
- щеточном коллекторном узле;
- слое изоляции обмоток и проводов.
Подшипники
Их расположение выполняется по краям ротора с таким условием, чтобы максимально передавать осевую нагрузку крутящего момента.
У обычного бытового инструмента они могут повреждаться по двум основным причинам:
- от неправильного приложения нагрузки:
- в результате загрязнения.
Направления приложенных усилий
Подшипники бытового электроинструмента, как правило, не предназначены для восприятия боковых нагрузок. От частого их приложения, например, когда при работе дрелью нагружают не конец сверла, а прорезают щелевые отверстия его боком, на подшипниковый механизм передаются биения вала, создающие дополнительные люфты шариков в обоймах.
Работа в загрязненной среде
Коллекторный двигатель имеет воздушную систему охлаждения. Крыльчатка, надетая на ротор, забирает воздух через специальные щели в кожухе двигателя и прогоняет его по всему корпусу для отвода излишнего тепла от нагревающихся обмоток. Теплые потоки выбрасываются через специальные отверстия.
Если в помещении создана пыльная среда, то она будет засасываться внутрь корпуса и проникнет на подшипники и коллекторно-щеточный механизм. Возникнет абразивное воздействие на соприкасающихся при вращении частях, их преждевременный износ, а также нарушение электрической проводимости на контактах щеток.
Использование коллекторного двигателя не по назначению, например, сбор потока строительной пыли бытовым пылесосом вместо строительного, наиболее частая причина его поломки.
Отчего искрят щетки
Конструктивные особенности
При работе двигателя происходит постоянное трение щеток о контактные пластины коллектора, что требует периодического осмотра.
На рабочих поверхностях медных площадок появляется незначительный слой угольной пыли, как показано на фотографии. Это связано с расходом материала и износом щеток.
Этот процесс идет всегда при работе коллекторного двигателя. Даже при нормальном скольжении щетки создается незначительный разрыв цепи электрического тока. А это всегда связано с искрообразованием из-за возникновения переходных процессов и появлением микроскопических дуг. К тому же обмотки обладают высоким индуктивным сопротивлением.
Поэтому полностью исправный щеточный механизм при номинальной работе искрит, что не заметно взглядом, но ощущают чувствительные электронные приборы: телевизоры, компьютеры и другая техника. В схему их питания всегда устанавливают помехоподавляющие фильтры. Примером служит приведенная на сайте электрическая схема микроволновой печи с выделенным фрагментом зеленого цвета.
Износ материала щеток
Прижимаемая к коллекторной пластине токоведущая часть выполнена из угля. Ее объём изнашивается, а длина уменьшается. При этом ослабляется усилие нажима, создаваемое расправляемой пружиной.
Этот процесс может учитывается или не приниматься во внимание в разных конструкциях коллекторных двигателей.
Раритетные образцы
На старом двигателе выпуска 1960 года, приведенном в качестве примера, сжатие пружины осуществляется усилием завинчивания диэлектрической крышки.
Процесс установки щетки показан ниже.
Двигатель пылесоса
Описанная в статье об изготовлении самодельного триммера конструкция щеточного механизма имеет винт фиксации корпуса щетки.
Его установка показана на очередной фотографии. Обратите внимание, что сама щетка неоднократно стачивалась в процессе длительной работы и заменялась выточенным из угольного электрода батарейки по форме предыдущей.
При самостоятельном изготовлении щеток обращайте внимание на плотность ее входа в гнездо и перпендикулярное положение к оси вала. Если она будет меньшего размера, то при работе возникнет перекос. Он приведет к излишнему искрению и снижению ресурса двигателя.
Поэтому желательно использовать заводские щетки от производителя.
Существуют и другие технические решения этого вопроса.
Как проверить степень износа щетки
Основной метод связан с визуальным осмотром. В интернете можно встретить советы, рекомендующие прижать при работе двигателя щетку отверткой и оценить изменение оборотов ротора.
Это опасная операция, выполнять которую может только обученный и опытный персонал потому, что:
- необходимо пользоваться защитными средствами: работа выполняется под напряжением;
- существует вероятность создания короткого замыкания, ибо проверять придется обе щетки по очереди или одновременно и использовать отвертки с изолированными стержнями и наконечниками.
Если внешний осмотр показал, что длина щетки сильно уменьшена или рабочая поверхность имеет сколы, то ее необходимо просто заменить.
Загрязненный коллектор
Образование излишнего слоя угольной пыли с хорошими токопроводящими свойствами на пластинах может стать причиной их замыкания. Необходимо ее удалять не только с внешней поверхности, но и из промежутков между ними.
Графитовую пыль можно стереть слегка смоченной в спирте или бензине мягкой ветошью или убрать тонкой деревянной палочкой.
Когда коллекторные пластины потеряли первоначальную форму и стали с выемками, то их восстанавливают наждачной шкуркой с самым мелким зерном на токарных станках. Это сложная операция, требующая специального оборудования, но она способна продлить ресурс коллекторного двигателя.
Межвитковые замыкания в обмотках
Их образование на статоре или роторе резко снижает индуктивное сопротивление, ведет к появлению дополнительных искр между различными секциями коллектора и щеток. Возникает дополнительный перегрев.
Обмотка ротора
Поврежденную секцию в отдельных случаях можно наблюдать визуально по изменению цвета. Для выполнения электрических замеров потребуется точный омметр. Технологию проверки демонстрирует видео владельца altevaa TV “Проверка якоря коллекторного двигателя”.
Ремонт поврежденной обмотки ротора — операция сложная. Иногда проще купить новый.
Обмотка статора
Неисправность можно выявить замером активной составляющей электрического сопротивления по мостовой схеме у каждой полуобмотки. Но это тоже довольно сложно.
Пробой диэлектрического слоя изоляции
Кратко коснемся причин образования дефектов и защитных устройств, которыми необходимо пользоваться.
Как возникают неисправности
Медные провода жил всех обмоток покрыты слоем лака, который может повреждаться от:
- неосторожно приложенных механических нагрузок;
- при повышенной температуре.
От этих же факторов возникают дефекты изоляции питающих проводов с полихлорвиниловым покрытием.
В результате этих воздействий появляются следующие неисправности электрической схемы:
- межвитковое замыкание, создающее дополнительный путь для протекания тока утечек, который значительно снижает рабочие характеристики двигателя;
- короткое замыкание, способное выжечь провода.
Защитные устройства
Термореле
Встроенная во многие коллекторные двигатели функция защиты от перегрева работает автоматически. Когда оборудование отключается от его частой работы, то необходимо искать причину завышения температуры. К сожалению, часть пользователей старается заблокировать термореле. Это приводит к поломке с трудно восстанавливаемым ремонтом.
Автоматический выключатель
Ликвидация короткого замыкания и перегруза внутри электрической схемы двигателя возложена на бытовой автомат, питающий силовую розетку. Он устанавливается в квартирном щитке и по своим техническим характеристикам должен соответствовать рабочему и аварийному режиму коллекторного двигателя.
Без защиты налаженным автоматическим выключателем пользоваться инструментом с коллекторным двигателем опасно для жизни.
УЗО
Устройство защитного отключения предназначено для защиты работающего персонала от воздействия токов утечек, проникающих на открытые металлические или случайно контактирующие токопроводящие части корпуса.
УЗО предотвращает стекание потенциала фазы через тело человека на землю. Оно тоже устанавливается в квартирном щитке.
Для закрепления материала рекомендуем посмотреть ролик владельца slavnatik “Почему искрит болгарка”.
Напоминаем, что сейчас вам удобно задать вопросы в комментариях и поделиться статьей с друзьями в соц сетях.
Полезные товарыhousediz.ru
Что такое бесколлекторный двигатель?

Типы моторов?
Двигатели в мультироторных аппаратах бывают двух типов: коллекторные и бесколлекторные. Их главное отличие в том, что у коллекторного двигателя обмотки находятся на роторе (вращающейся части), а у бесколлекторного — на статоре. Не вдаваясь в подробности скажем, что бесколлекторный двигатель предпочтительнее коллекторного поскольку наиболее удовлетворяет требованиям, ставящимся перед ним. Поэтому в этой статье речь пойдёт именно о таком типе моторов. Подробно о разнице между бесколлекторными и коллекторными двигателями можно прочесть в этой статье.
Несмотря на то, что применяться БК-моторы начали сравнительно недавно, сама идея их устройства появилась достаточно давно. Однако появление транзисторных ключей и мощных неодимовых магнитов сделало возможным их коммерческое использование.
Устройство БК — моторов
Конструкция бесколлекторного двигателя состоит из ротора на котором закреплены магниты и статора на котором располагаются обмотки. Как раз по взаиморасположению этих компонентов БК-двигатели делятся на inrunner и outrunner.
В мультироторных системах чаще применяется схема Outrunner, поскольку она позволяет получать наибольший вращательный момент.
Плюсы и минусы БК — двигателей
Плюсы:
- Упрощённая конструкция мотора за счёт исключения из неё коллектора.
- Более высокий КПД.
- Хорошее охлаждение
- БК-двигатели могут работать в воде! Однако не стоит забывать, что из-за воды на механических частях двигателя может образоваться ржавчина и он сломается через какое-то время. Для избежания подобных ситуаций рекомендуется обрабатывать двигатели при помощи водоотталкивающей смазки.
- Наименьшие радиопомехи
Минусы:
Из минусов можно отметить только невозможность применения данных двигателей без ESC (регуляторы скорости вращения). Это несколько усложняет конструкцию и делает БК-двигатели дороже коллекторных. Однако если сложность конструкции является приоритетным параметром, то существуют БК-двигатели с встроенными регуляторами скорости.
Как выбрать двигатели для коптера?
При выборе бесколлекторных двигателей в первую очередь следует обратить внимание на следующие характеристики:
- Максимальный ток — эта характеристика показывает какой максимальный ток может выдержать обмотка двигателя за небольшой промежуток времени. Если превысить это время, то неизбежен выход двигателя из строя. Так же этот параметр влияет на выбор ESC.
- Максимальное напряжение — так же как и максимальный ток, показывает какое напряжение можно подать на обмотку в течение короткого промежутка времени.
- KV — количество оборотов двигателя на один вольт. Поскольку этот показатель напрямую зависит от нагрузки на вал мотора, то его указывают для случая, когда нагрузки нет.
- Сопротивление — от сопротивления зависит КПД двигателя. Поэтому чем сопротивление меньше — тем лучше.
dronomania.ru
Коллекторный двигатель переменного тока: схема подключения
Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.
Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.
ОГЛАВЛЕНИЕ
- Особенности конструкции и принцип действия
- Упрощенная схема подключения
- Управление работой двигателя
- Преимущества и недостатки
- Типичные неисправности
Особенности конструкции и принцип действия
По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.
Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.
В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.
Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.
Упрощенная схема подключения
Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.
Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.загрузка…
Управление работой двигателя
На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.
В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:
- электронная схема подает сигнал на затвор симистора;
- затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
- тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
- в результате ротор вращается равномерно при любых нагрузках;
- реверс электродвигателя осуществляется с помощью реле R1 и R
Помимо симисторной существует фазоимпульсная тиристорная схема управления.
Преимущества и недостатки
К неоспоримым достоинствам таких машин следует отнести:
- компактные габариты;
- увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
- быстрота и независимость от частоты сети;
- мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.
Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:
- снижение долговечности механизма;
- искрение между и коллектором и щетками;
- повышенный уровень шумов;
- большое количество элементов коллектора.
Типичные неисправности
Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.
Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.
electricvdele.ru