Ток и напряжение. Виды и правила. Работа и характеристики
Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.
Напряжение
Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.
Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.
Напряжение разделяется на несколько видов, в зависимости от видов тока.
- Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
- Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
• амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
• мгновенное напряжение, которое выражается в определенный момент времени;
• действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
• средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.
При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.
Электрический ток
Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.
Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.
Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.
Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.
Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.
Ток и напряжение подчиняются правилам:
- Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
- В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
- Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока
Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.
По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.
В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.
Также существуют другие способы создания внутреннего тока в:
- Жидкостях и газах за счет передвижения заряженных ионов.
- Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
- Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока
- Нагревание проводников (не сверхпроводников).
- Приложение к носителям заряда разности потенциалов.
- Химическая реакция с выделением новых веществ.
- Воздействие магнитного поля на проводник.
Формы сигнала тока
- Прямая линия.
- Переменная синусоида гармоники.
- Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
- Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
Виды работы электрического тока
- Световое излучение, создающееся приборами освещения.
- Создание тепла с помощью нагревательных элементов.
- Механическая работа (вращение электродвигателей, действие других электрических устройств).
- Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током
- Перегрев контактов и токоведущих частей.
- Возникновение вихревых токов в сердечниках электрических устройств.
- Электромагнитные излучения во внешнюю среду.
Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.
Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.
Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.
Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
- Низкочастотные сигналы с меньшей величиной частоты тока.
- Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.
Электрический ток в металлах
Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.
В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.
При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.
Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.
Похожие темы:
electrosam.ru
Что такое напряжение, ток, сопротивление: разбираемся на примерах
Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.
И так будем разбираться во всем по порядку.
Электричество
Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.
Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.
Данное явление называется
Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.
Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.
Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е–.
Напряжение
Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В или V). В формулах и расчетах напряжение обозначается буквой V. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).
Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.
Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.
Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).
Электрический ток
Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.
Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!
Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·1018 электронов) за 1 секунду.
Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.
Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает
Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.
Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение
. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.Сопротивление
Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.
Проводники по-разному проводят ток. Их
На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.
Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.
Мощность
Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.
Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.
Единица измерения мощности – Ватт (обозначается Вт или W). В формулах и расчетах мощность обозначается буквой P. Для цепей переменного тока применяется термин Полная мощность, единица измерения – Вольт-ампер (В·А или V·A), обозначается буквой S.
И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.
Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями R (Ом) от плюса к минусу течет электрический ток
Фонарик, что представлен на фотографии, собран на базе конструктора «Знаток». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.
imolodec.com
Напряжение и ток [Амперка / Вики]
Для того, чтобы электронный компонент совершал полезную работу: лампа — горела, двигатель — вращался, через него должен протекать электрический ток.
Ток создаётся электрическим потенциалом. Если сравнивать течение тока и течение жидкости, то электрический потенциал — это напор, а ток — это струя воды. Наличие потенциала самого по себе не достаточно для создания тока.
Во-первых, необходим проводник по которому ток будет течь. Например: медный провод. Если проводника нет, потенциал «утыкается» в воздух, а воздух очень хорошо препятствует течению электричества. Это аналогично тому, что вода не будет течь пока закрыт кран: давление есть — течения нет. Материалы, не позволяющие току течь называются диэлектриками. Позволяющие течь — проводниками. Позволяющие при одних условиях и не позволяющие при других — полупроводниками.Во-вторых, необходима разность потенциалов. Ведь если с двух концов водопроводной трубы будет одинаковый напор, каким бы сильным он не был — течения внутри не будет. То же самое и с электричеством. Разность потенциалов называют напряжением.
Потенциал и напряжение (обозначаются буквой U или V) мерятся в вольтах; сила тока (обозначается буквой I) или просто ток — в амперах. В микроэлектронике обычно используются напряжения от долей вольт до десятков вольт и силы тока от долей миллиампер (мА) до сотен миллиампер.
По договорённости считается, что ток течёт в направлении от плюса к минусу. По аналогии как вода течёт из области высокого давления к пустому концу трубы. На самом деле, какое направление положительное, а какое отрицательное — условность. Исторически так сложилось, что открытие отрицательно заряженных электронов, которые и формируют ток, было сделано уже после того, как все договорились, что считать положительным течением тока. Поэтому в силу той ошибки на практике ситуация такова: говорят, что ток течёт из точки А в точку Б, хотя на физическом уровне электроны мчатся от точки Б к точке А. Чтобы не путаться, нужно запомнить: в схемотехнике никто не вспоминает куда перемещаются электроны, положительное течение тока — это течение из точки с большим потенциалом в точку с меньшим; в направлении тока перемещаются положительные заряды. Да, они виртуальные, их не бывает на самом деле, но так удобнее.
Точку цепи, предоставляющую неограниченную возможность возврата/слива отработавших зарядов называют землёй (Ground, GND). Не нужно понимать «землю» в буквальном смысле. Ей может быть и отрицательный полюс батарейки, и корпус автомобиля, и, действительно, планета Земля. Для удобства считают, что земля — это потенциал в 0 В. Все остальные потенциалы считают относительно неё. Кроме того, в схемотехнике практически не пользуются понятием электрического потенциала: говорят, что напряжение в определённой точке составляет 12 В, на самом деле имеют в виду, что разность потенциалов между ней и землёй составляет 12 В.
Источники питания
Проходя по цепи, электрическая энергия расходуется: часть её идёт на совершение полезной работы, часть теряется, превращаясь в тепло. Чтобы устройство работало постоянно, требуется сила, которая бы удерживала напряжение в цепи. Её называют ЭДС (электродвижущая сила, electromotive force, EMF), а создают её источники питания. Примером компонента с ЭДС являются: обычные батарейки, солнечные батареи, трансформатор в блоке питания, моторчик вращаемый хомяком в колесе.
На схемах источник питания может указываться как в явном виде, собственным символом, так и в неявном: обозначается ноль контакт входного напряжения и земля без акцента на то, откуда энергия возьмётся. Таким образом, следующие схемы эквивалентны:
Мощность
Мощность — это количество переносимой энергии за единицу времени. Переносимая электрическая энергия обычно трансформируется конечными устройствами в другие формы: тепло, свет, звук и т.д. Единица измерения мощности — Ватт. Мощность P рассчитывается по формуле:
Различные компоненты расчитаны на разную мощность. Обычно в документации на компонент указывается при каком напряжении он работает и какой ток при этом потребляет. Есть компоненты, которые «возьмут» только то количество тока, которое им необходимо; есть те, которые будут гореть и плавиться, но заберут всё, что дают.
Предоставить нужное количество энергии в нужный момент в определённое место цепи — одна из главных задач разработчика схемы. Реализуется это с помощью соединения базовых компонентов (таких как, например, резисторы и транзисторы) в типовые, шаблонные схемы.
wiki.amperka.ru
Прежде чем рассматривать понятие напряжение электрического тока, кратко напомним понятие тока вообще. В самом общем понятии – это упорядоченное, направленное движение заряженных частиц (электронов), производимое под воздействием электрического поля. Также нельзя забывать и о силе тока – одной из основных величин электричества. При перемещении зарядов электрическое поле совершает определенную работу. Принцип действия напряжения токаЧем больший заряд необходимо переместить за 1 секунду в электрической цепи, тем большую работу совершает электрическое поле. Поэтому его работа полностью зависит от силы тока. Однако, кроме силы тока существует еще одна величина, влияющая на работу. Это и будет напряжение, о котором пойдет речь. Напряжение это отношение работы тока на отрезке цепи к величине заряда, проходящего по этому участку электрической цепи. Иначе говоря, это работа (энергия), расходуемая при перемещении одного положительного заряда из точки с маленьким потенциалом в точку с большим потенциалом. Напряжение определяют еще как разность потенциалов или электродвижущую силу. Единицей измерения работы электрического тока является джоуль (Дж), электрический заряд измеряется в кулонах (Кл). Таким образом, единица измерения напряжения – 1 Дж/Кл. Эту единицу назвали вольт (В), в честь Алессандро Джузеппе Антонио Анастасио Вольта (1745-1827) – итальянского ученого физика и химика, одного из основоположников учения об электричестве. Как на практике работает эта единица измеренияЕсли объяснять просто, для непосвященных, вольт будет считаться мерой «давления» или воздействия, заставляющее электрический ток передвигаться по цепи или проводу. В то же время ампер будет его мерой «объема». Чтобы наглядно объяснить работу вольта и ампера, в качестве примера можно использовать принцип «воды в шланге». Здесь напряжение в вольтах будет аналогично давлению воды, а сила в амперах – объему воды. Если вода поступает в шланг без наконечника, то через него проходит большое количество воды (ампер), давление, при этом возникает небольшое (вольт). Когда мы прижимаем наконечник шланга пальцем, то объем проходящей по нему воды снижается, зато давление воды увеличивается и струя брызгает намного дальше. Сравнивая этот пример с электричеством, мы видим, что сила тока – это количество электронов, проходящих по проводу, а напряжение показывает нам, с какой силой эти электроны проталкиваются. Из этого следует вывод, что при одинаковом напряжении у провода, проводящего больший электрический ток, должен быть и больший диаметр. Для возникновения напряжения в электрической сети обязательно необходим какой – либо источник тока. Когда электрическая цепь находится в разомкнутом состоянии, то напряжение существует лишь на клеммах самого источника. При включении источника тока в электрическую цепь, на отдельных ее участках возникает напряжение. Одновременно в цепи возникает сила тока. Наблюдаем взаимосвязь: без напряжения – нет и силы тока. Для измерения напряжения используют специальный электроизмерительный прибор, который называется вольтметр. По своему внешнему виду он, практически, похож на амперметр, и отличается лишь шкалой. На шкале у амперметра – буква «А», у вольтметра – буква «V». При проведении измерений амперметр включается в цепь последовательно, а вольтметр –параллельно. |
electric-220.ru
Основы радиотехники — напряжение тока. сила тока. Simpleinfo – все сложное простыми словами!
14 Декабря 2016
2515
В предыдущей статье, мы рассмотрели электрический ток. В этой статье будем рассматривать единицы измерения. Как без них? Но что бы не усложнять, рассмотрим только самые нужные, да и в дальнейшем в принципе только они понадобятся.
Мы уже знаем, что электрический ток, это движение частиц. Что бы эти частицы двигались, необходима внешняя направленная сила (например электрическое поле). И эту силу, которая двигает частицы, необходимо поддерживать.
Источник питания (источник напряжения, источник тока) имеют две клеммы или два полюса. Которые имеют разность потенциалов. Разность потенциалов, если простыми словами дать объяснение – это запас частиц, которые стремятся друг к другу. То есть, при возможности частицы из клеммы (-) будут стремится к клемме с (+).
Рассмотрим на картинке.
наведите или кликните мышкой, для анимации
На картинке мы видим источник питания и проводник. Если наведем мышку на картинку, источник питания «крутиться», то есть там поддерживается какая то сила для переноса частиц. Проводник не соединен к источнику питания, то есть цепь не замкнутая. Для того, что бы возник электрический ток — необходимо замкнуть цепь.
Рассмотрим на примере.
наведите или кликните мышкой, для анимации
В проводнике возникает электрический ток, то есть упорядоченное движение частиц. При перемещение заряженных частиц, что мы видим?
- 1. Какое количество частиц передвигаются.
- 2. Какая энергия тратится на перемещение частицы.
Сила тока
Сила тока — это величина, равная отношению количества заряда, проходящего через поперечное сечение проводника, к времени его прохождения. То есть это ответ на наш первый вопрос, сколько зарядов проходит через поперечное сечение проводника, за определенное время.
Единица измерения силы тока – это Ампер (А).
Условное обозначение: I
Ниже на картинке отобразим этот момент:


наведите или кликните мышкой, для анимации
Напряжение тока
Сила тока, это больше количественный показатель. Для того что бы частицы перемещались, необходима энергия (работа).
Напряжение тока (электрическое напряжение) – это энергия расходуемая при перемещение заряда. Простыми словами, это сила (давление) которое передвигает заряды по проводнику. Таким образом мы ответили на второй вопрос.
Единицы измерения напряжения тока – это Вольт (В).
Условное обозначение: U


наведите или кликните мышкой, для анимации
Мы теперь знаем что такое сила тока, напряжение тока и их условные обозначения. Еще хочу добавить, часто для объяснения этих процессов приводят пример с водой в трубе. Труба в данном случае это проводник, давление которое толкает воду это напряжение и количество воды (через поперечное сечение) это сила тока.
simple-info.ru
Определение электрического напряжения
То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.
То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:
U=A/q,
где U — напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.
Напряжение на полюсах источника тока
Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.
2) Диэлектрики в электрическом поле
В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются
связанными : электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются
вблизи узлов кристаллической решётки.
Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов
1
. Поэтому для диэлектриков не проходят наши доказательства свойств
проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,
не распростаняется на диэлектрики.
1. Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.
2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.
3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.
4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о
«потенциале диэлектрика» не приходится.
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.
Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:
В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:
Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.
Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.
Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)
Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.
Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.
studfiles.net
Формула и определение электрического напряжения в цепи в физике
В современном быту, строительстве и других сферах жизни человека огромную роль играет энергия, которая необходима для приведения в движение различных механизмов, производственных станков и инструментов. Электрическое напряжение, или как его принято называть в народе ток, занимает первое место среди ресурсов снабжения, поэтому человек во многом зависит от бесперебойной подачи электричества правильного номинала. В данной статье рассмотрено определение электрического напряжения, его формула, а также, от чего зависит и на что влияет данный показатель.
Электрическое напряжение
Что такое напряжение
Электрическое напряжение – это работа, которая необходима для подачи заряда электрическим полем от поставщика до потребляемого прибора по проводам или без них. Проще говоря, это величина силы, потраченной для доставки определенного заряда тока по проводнику от одного конца на другой. Без напряжения не будет перемещения заряженных частиц, а, следовательно, ток не будет поступать к потребителю, номинальная величина в цепи будет равна нулю.
Электрическим током заряжены все элементы и предметы, которые окружают человека, разница лишь в величине напряжения – у некоторых вещей данный показатель минимален и фактически не заметен, у других – наличие тока более выражено. За долгие годы исследований ученые изобрели множество приборов, которые способны вырабатывать электрический ток различного напряжения и силы, начиная от малогабаритных и заканчивая крупными электростанциями, питающими целые города. Электрическое напряжение напрямую связано с силой тока: чем выше напряжение, тем выше будет величина силы тока.
Для более точного понимания определения напряжения тока необходимо разобраться в физике образования электричества в целом. Откуда берется электрический ток?
Все предметы и вещества состоят из атомов с положительным зарядом, число которых равно числу вращающихся вокруг них отрицательно заряженных частиц. Проще говоря, количество электронов равно количеству нейтронов. Чтобы возникло напряжение в сети, из ядра извлекаются некоторые электроны, возникает разряжение, и оставшиеся частицы пытаются восполнить пробел путем притяжения электронов снаружи, возникает положительный заряд. Если же добавить электроны в атом, возникнет переизбыток, и образуется отрицательное энергетическое поле.
В результате такого взаимодействия возникают положительный и отрицательный потенциалы, и чем больше контакта у этих элементов, тем выше сила и напряжение электрического тока. При соединении указанных потенциалов образуется энергетическое поле, которое увеличивается при повышении количества заряженных атомов внутри себя.
Формула для вычисления напряжения тока выглядит следующим образом:
U=A/q, где:
- U – это само напряжение,
- A – работа, необходимая для перемещения заряда,
- Q – отрезок расстояния, на которое перемещается заряженный атом.
Формула напряжения
Таким образом, можно сделать вывод, что сила тока на протяжении всей цепи будет одинаковой, а напряжение на каждом из участков будет разным, в зависимости от нагрузки на данный отрезок. Как известно, энергия не возникает из ниоткуда и не пропадает в неизвестном направлении, поэтому при повышении напряжения на определенном участке провода избыточный ток выражается в тепловой нагрузке, проще говоря, материал, из которого изготовлен проводник, начинает греться.
Влияние температуры проводника на сопротивление
От чего зависит напряжение
Существует три основных фактора, влияющих на норматив напряжения электрических токов, среди которых:
- Материал, из которого выполнен проводник. Для решения определенных задач существуют различные типы проводов, чаще всего можно встретить медные или алюминиевые изделия различного сечения и наружной оболочки. Наружная обмотка таких проводов бывает также из множества материалов, защитных и декоративных, например, ПВХ пленка или резиновая защита. Такая обработка позволяет использовать проводку в любых условиях, в том числе для организации наружного освещения;
- Температуры использования проводника;
- Уровня сопротивления электрического тока на данном участке. Данная величина зависит от свойств проводимости кабеля или иного предмета, подключенного к сети, и способности к беспрепятственному пропуску атомов через себя. Существуют материалы с нулевым сопротивлением или полностью диэлектрические, то есть не способные проводить электрический ток любого напряжения.
Ток и его напряжение напрямую зависят друг от друга, поэтому и их обозначения одинаковы. Напряжение тока измеряется в Вольтах и обозначается буквой В. Вольт выражается в разности положительного и отрицательного потенциалов на двух удаленных от друг друга точках поля, силы которого совершают усилия, равные одному Дж, при доставке заряда от одного отрезка к конечному. Номинал единицы заряда равен одному Кл, таким образом, обозначение 220 Вольт включает в себя понятие, что данная сеть способна потратить энергию в 220 Дж для транспортировки зарядов от входной точки до потребителя, это и называется электрическим напряжением в сети.
Виды напряжения электрического тока
Синусоида постоянного и переменного тока
Что такое электрическое напряжение, описывается в учебниках по физике, там же приводится его классификация на основании временного промежутка подачи энергии. По данному признаку напряжение бывает:
- Постоянное – это когда на одном конце проводника ток и электрическое напряжение положительные, а на другом – отрицательные, и их значение направлено в одну сторону. Чаще всего такая система встречается в автономных батареях слабой и средней мощности;
Важно! Случайная или умышленная замена полярностей может привести к выходу из строя прибора, а также короткому замыканию при соединении нескольких элементов, осуществлять это нужно последовательно, стыкуя минусовый контакт к плюсовому. Синусоида при постоянном токе будет ровной без рывков и волн.
- Переменный ток и электрическое напряжение отличаются от постоянных тем, что у них может быть несколько направлений, например, при частой замене потенциалов полярностей или их перемещении возникает обратное движение заряда, частота данного действия и будет показателем переменного тока. Чаще всего данную систему используют для транспортировки электричества по проводнику на большие расстояния, так как потери тока минимальны, следовательно, и напряжение не уменьшается. Также переменный ток используется в трехфазных двигателях и при доставке постоянного тока на трансформатор для его последующего разделения. Синусоида переменного тока выглядит неровной, волнообразной, с множественными скачками. Существуют формула и механизмы, которые используются для преобразования переменного тока в постоянный, это возможно при наличии конденсаторов и диодного моста.
Между фазами переменного тока также существуют свои показатели, в данном случае напряжение равно 380В, по количеству разности потенциалов в трехфазной сети. В сети напряженностью 220В всего два провода: один – с несущей фазой, второй – с нулем, также для безопасности добавляется кабель заземления. В трехфазной сети имеется четыре жилы, и один дополнительный заземляющий провод, в сумме напряжение всех трех фаз составляет 380В.
Меры предосторожности
Ток и электрическое напряжение являются источником повышенной опасности, поэтому при работе и эксплуатации данного типа энергии необходимо соблюдать нормы и правила безопасности, не допускать аварийных ситуаций и обеспечить все приборы автоматической системой отключения питания.
Запрещается работать с проводкой, находящейся под напряжением, или без устройства для заземления. В случае возникновения короткого замыкания необходимо отключить все приборы от сети и предотвратить возгорание обмотки двигателя или кабеля.
Видео
Оцените статью:elquanta.ru