Сила тока как обозначается – Основные величины и меры электрического тока

Основные величины и меры электрического тока

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.


Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой – I.

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).


Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U, напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е.

Узнайте больше о напряжение в нашей статье.


Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой –

Р. Мощность определяется зависимостью:

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.


Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловатт*час (кВт*ч).


Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения — Ом (Ом). Сопротивление обозначается буквой –

R. Связано с током и напряжением законом Ома (формулой):

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.


Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.


Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой — σ. Проводимость — величина обратная сопротивлению, и связана с ним формулой:

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.


Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия — круговая (или циклическая) частота — ω, определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока — f

, характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения — Герц (Гц). Обе частоты связаны друг с другом через выражение:


Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т. Период связан с частотой электрического тока выражением:


Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ. Длина волны связана с частотой и определяется через скорость распространения света:


Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С. Единица измерения электрической ёмкости — Фарада (Ф).


Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L. Единица измерения индуктивности — Генри (Гн).


Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — ХС и определяется по формуле:


Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается ХL и определяется по формуле:


Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

, или


Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:


Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле:

meanders.ru

как и в чём измеряется, по каким формулам находится, как обозначается

Определение понятия силы тока звучит так: это заряженные частицы (электрические заряды), которые двигаются в определённом направлении и называются электронами.

Представим, что через участок цепи проходит определённое количество электричества, например, один кулон.

Он может пройти за одну секунду, а может за целый час. Поэтому сила его определяется именно количеством электричества, которое проходит через проводник за конкретную единицу времени — секунду.

Виды тока и единицы измерения

Ток бывает двух видов:

  • Постоянный — это тот, что не меняется со временем.
  • Переменный — это тот, что находится в розетке.

Обычные батарейки или аккумуляторы телефонов выдают именно постоянный. А переменный может изменяться. Когда вы включаете в одну розетку настольную лампу, которой не требуется большая сила, и вместе с ней включаете, например, мощный пылесос, то работают оба прибора, так как ток в сети переменный, в отличие от напряжения, он «подстроился» под приборы. Если бы он был постоянным, то в зависимости от его величины у вас либо сгорит лампа, либо не заработает пылесос.

Измеряется в амперах (А) — эта единица измерения одна из основных в СИ, обозначается величина английской буквой I.

Сила может измеряться основными и вспомогательными единицами:

  • Ампер (А).
  • миллиампер (мА) — это одна тысячная ампера.
  • микроампер (мкА) — одна миллионная ампера.

Если в замкнутой простой цепи проходит постоянный тoк, то в каждом месте цепи за секунду или минуту проходит абсолютно равное его количество, так как он не может накапливаться в отдельных участках цепи. Если рассматривать сложные цепи, то это правило тоже работает, но уже для отдельных участков цепи, которые можно считать простыми.

Количество его измеряется в кулонах. Если через поперечное сечение проводника за одну секунду проходит точно один кулон — то это один ампер. Для нахождения её можно использовать специальные приборы либо формулы.

Формулы для расчета величины

Начнём с формул, по которым можно вычислить эту самую силу. Например, если знать, сколько электричества прошло через проводник за определённый и известный промежуток времени, то можно узнать его силу по такой формуле: I = q/t, где:

  • q — это электрический заряд, который измеряется в кулонах;
  • t — время прохождения этого заряда, измеряется в секундах.

Закон Ома звучит так: сила тока в цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению. Этот закон применяется для вычисления силы постоянного тока.

Если вам нужно найти значение для переменного, то результат формулы нужно разделить на корень из двух.

Если опустить слова и перейти к обозначениям, то выглядит формула так: I = U/R. Буква I — сила тока в амперах. Буквой U обозначается напряжение в цепи, которое измеряется в вольтах. Буква R — это сопротивление, оно измеряется в Омах.

Зная эту формулу, можно без проблем вычислять и напряжение или сопротивление в цепи.

Можно ещё встретить такую запись закона: I = U/R+r. Это полный Закон Ома, который, помимо сопротивления внешних элементов цепи, учитывает сопротивление внутри источника питания и позволяет вычислить потребляемый ток.

Измерение с помощью приборов

Амперметр — специальный прибор, с помощью которого можно узнать, какая в цепи сила тока. Обозначение на амперметре покажут вам результат. Он подключается в разрыв таким образом, чтобы электричество протекало через прибор. Такое подключение называется последовательным. Подключать можно в любом месте, так как сила одинакова на любом участке замкнутой цепи. Применяется этот метод для измерения постоянного тока.

Если амперметра нет под рукой, то можно воспользоваться вольтметром — прибором для измерения напряжения в цепи. Для этого его нужно подключить параллельно в электрическую цепь. Замерив напряжение в цепи и зная сопротивление, мы можем высчитать силу тока по формуле Ома.

Также существует электромагнитный способ измерения постоянного и переменного тoка. Для этого требуется специальный магнитомодульный датчик. Он находит нужное значение, анализируя электромагнитное поле.

Не стоит забывать, что ток, как огонь — он полезен точно так же, как и опасен. Даже одна десятая ампера может быть опасна и даже смертельна для человека. А ведь в некоторых бытовых приборах он может достигать 10 и больше ампер. Даже в обычной лампочке накаливания его может быть достаточно для того, чтобы убить человека. Не говоря уже про технику где-нибудь на производствах, где он порой достигает нескольких тысяч ампер. Так что будьте осторожны.

220v.guru

Сила тока. Амперметр — урок. Физика, 8 класс.

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока \((I)\) — скалярная величина, равная отношению заряда (\(q\)), прошедшего через поперечное сечение проводника, к промежутку времени (\(t\)), в течение которого шёл ток.

I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.

 

Единица измерения силы тока в системе СИ — \([I] = 1 A\) (ампер).


В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:


при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.


 

За единицу силы тока \(1 A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)\(H\).

Единица силы тока называется ампером (\(A\)) в честь французского учёного А.М. Ампера.

 

Андре-Мари Ампер

(1775 — 1836)

 

А.М. Ампер ввёл такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.д.


Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У источников переменного тока нет полюсов. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

 

Силу тока измеряют амперметром. В электрической цепи он обозначается так:

 

Обрати внимание!

Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить. Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!

Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры.

 

Микроамперметр

Миллиамперметр

Амперметр

Килоамперметр

 

Обрати внимание!

Различают амперметры для измерения силы постоянного тока и силы переменного тока.

Их можно различить по обозначениям: 

  • «~» означает, что амперметр предназначен для измерения силы переменного тока;
  • «» означает, что амперметр предназначен для измерения силы постоянного тока.

Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.


Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
 

Для измерения силы постоянного тока

Для измерения силы переменного тока

 

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

 

 

Обрати внимание!

Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (см. рисунок): провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «+»; провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «-».

Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.


 

В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.

 

Обрати внимание!

В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова.

Это видно из опыта, изображённого на рисунке.

 

 

Обрати внимание!

Безопасным для организма человека можно считать переменный ток силой не выше \(0,05 A\), ток силой более \(0,05 — 0,1 A\) опасен и может вызвать смертельный исход.

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://class-fizika.narod.ru/8_28.htm
http://school.xvatit.com/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D0%BE%D0%BA%D0%B0
http://physics.kgsu.ru/index.php?option=com_content&view=article&id=217&Itemid=72

http://kamenskih3.narod.ru/untitled74.htm

 

www.yaklass.ru

16. Электрический ток. Сила тока. Плотность тока

Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля.

Сила тока (I) — скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.

I=q/t, где I— сила тока, q — заряд, t — время.

Единица измерения силы тока в системе СИ: [I]=1A (ампер)

17. Источники тока. Эдс источника

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:

Измеряется в вольтах (В).

Источник ЭДС — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия.

18. Закон Ома: сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:

-закон Ома в интегральной форме R – электрическое сопротивление проводника

Величина, обратная сопротивлению, называется проводимостью. Величина, обратная удельному сопротивлению, называется удельной проводимостью: Единица, обратная Ом, называется Сименсом [См].

закон Ома в дифференциальной форме.

19. Обобщенный закон Ома

Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

;

Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (Uab), идеального источника ЭДС (Е) и положительного направления тока (I).

Закон Джоуля-Ленца

Выражение закона Джоуля — Ленца

Интегральная форма закона

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

Эквивалентные выражения теплоты согласно закона Ома

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

20.Магни́тное по́ле— силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния ихдвижения; магнитная составляющаяэлектромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментамиэлектроноватомах (и магнитными моментами другихчастиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции(вектор индукции магнитного поля). С математической точки зрения— векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Вместе, магнитное и электрическоеполя образуют электромагнитное поле, проявлениями которого являются, в частности свети все другие электромагнитные волны.

Магнитное поле создаётся (порождается) током заряженных частиц или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)

Графическое изображение магнитных полей

Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.

studfiles.net

Ампер-единица измерения силы тока

Как называется единица измерения силы тока? Именно такой вопрос наиболее часто задают учителя в школе ученикам на уроках физики. Именно этому вопросу и посвящена настоящая статья.

Единица измерения силы тока – ампер, в России обозначается буквой А, аналогично ампер обозначается и на международном уровне.

Ампер является единицей измерения силы тока, получившей свое название в честь известного французского физика, математика и естествоиспытателя Андре Ампера, который ввел в физику понятие «электрический ток» и является автором Закона Ампера.

В первые, единица измерения ампер была принята в 1881 году на 1-ом Международном конгрессе электриков.

Определение ампера, которое используется в физике в настоящее время было установлено Международным комитетом мер и весов (МКМВ) в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году.Ампер на ряду с метр, килограмм, секунда, кельвин, моль, кандела является одной из семи основных единиц Международной системы единиц (СИ).

В Российской Федерации допускаются к применению основные единицы СИ, производные единицы СИ и отдельные внесистемные единицы величин.

В соответствии с Постановлением Правительства РФ от 31 октября 2009 г. № 879 Об утверждении положения о единицах величин, допускаемых к применению в Российской Федерации», в Российской Федерации применяются единицы величин Международной системы единиц (СИ), принятые Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии.

Также в Российской Федерации действует ГОСТ 8.417-2002, который устанавливает единицы физических единиц, применяемых в нашей стране, их наименование, обозначение и определение , в данном государственном стандарте также указана единица измерения электрического сопротивления Ом (Таблица №3 ГОСТ 8.417-2002).

Согласно указанным нормативно-правовым актам установлено официальное определение ампера, ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2•10^( -7) ньютона (Международный Комитет мер и весов (МКМВ), 1946 год, Резолюция 2, одобренная IX ГКМВ, 1948 год).

Стоит отметить , что сейчас физики обсуждают ревизию основных систем единиц с целью изменения определений основных единиц измерений, не является исключением и единица измерения ампер. Планируется, что ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X•10−19, когда он выражен единицей СИ c•А, что эквивалентно Кл.

Делается это для того чтобы определение базировалось на фундаментальных физических постоянных.

Каким прибором измеряется сила тока?

Сила тока измеряется прибором, который носит название – Амперметр.

Ампер в кроссворде и сканвордах.

Да-да, ампер не только единица измерения силы тока, но и регулярный участник множества кроссвордов и сканвордов.

Очень часто в кроссворде или сканворде можно встретить такой вопрос: «единица измерения силы электрического тока 5 букв». Правильный ответ, естественно: «Ампер».

Либо вопросы сканворда касаются физика Ампера : «имя физика ампера 5 букв». Правильный ответ: «Андре»

zakon-oma.ru

Что такое сила тока — пояснения и формулы

Движение заряженных частиц в проводнике в электротехнике называется электрическим током. Электроток не характеризуется только прошедшим через проводник значением количества электрической энергии, так как за 60 минут через него может пройти электричество равное 1 Кулону, но и такое же количество электричества можно пропустить через проводник за одну секунду.

Что такое сила тока

Когда рассматривается количество электричества, протекающее через проводник за разные интервалы времени, понятно, что за меньший промежуток времени ток течет интенсивней, поэтому в характеристику электротока вводится еще одно определение — это сила тока, которая характеризуется протекающим в проводнике током за секунду времени. Единицей измерения величины силы проходящего тока в электротехнике принят ампер.

Иными словами, сила электрического тока в проводнике — это количество электричества, которое прошло через его сечение за секунду времени, маркировка литерой I. Силу тока измеряют в амперах — это единица измерения, которая равняется силе неизменяющегося тока, проходящего по бесконечным параллельным проводам с наименьшим круговым сечением, удаленным друг от друга на 100 см и расположенным в вакууме, который вызывает взаимодействие на метре длины проводника силой = 2*10 минус 7 степени Ньютона на каждые 100 см длины.

Специалисты часто определяют величину проходящего тока, на Украине (сила струму) она равна 1 амперу, когда через сечение проводника проходит каждую секунду 1 кулон электричества.

Формула определения силы тока:

Формула определения силы тока

В электротехнике можно увидеть частое применение других величин в определении значения силы проходящего тока: 1 миллиампер, который равен единица/ Ампер, 10 в минус третьей степени Ампер, один микроампер — это десять в минус шестой степени Ампер.

Зная количество электричества, прошедшее через проводник за определенный промежуток времени, можно вычислить силу тока (как говорят на Украине — силу струму) по формуле:

Формула силы тока

Когда электрическая цепь замкнута и не имеет ответвлений, тогда в каждом месте ее поперечного сечения протекает за секунду одинаковое количество электричества. Теоретически это объясняется невозможностью накапливания электрических зарядов в каком либо месте цепи, по этой причине сила тока везде одинакова.

Правило постоянства электрического тока в замкнутой цепи

Данное правило справедливо и в сложных цепях, когда есть ответвления, но относится к некоторым участкам сложной цепи, которые можно рассматривать в виде простой электроцепи.

Как измеряется сила тока

Величину силы тока измеряют прибором, который называется амперметр, а также для небольших значений — миллиамперметр и микроамперметр, который можно увидеть на фото внизу:

Амперметр Основы

Среди людей бытует мнение, что когда измеряется сила тока в проводнике до нагрузки (потребителя), то значение будет выше, чем после нее. Это ошибочное мнение, основанное на том, что якобы какое-то значение силы будет расходоваться на то, чтобы привести потребитель в действие. Электроток в проводнике — это процесс электромагнитный, в котором участвуют заряженные электроны, они направленно двигаются, но энергию передают не электроны, а электромагнитное поле, которое окружает проводник.

Количество электронов, вышедших из начала цепи, будет равно количеству электронов и после потребителя в конце цепи, они не могут быть израсходованы.

Измерение силы тока

Какие проводники бывают? Специалисты дают определение понятию «проводник» — это материал, в котором частицы, имеющие заряд, могут перемещаться свободно. Такие свойства на практике имеют почти все металлы, кислота и солевой раствор. А материал или вещество, в котором движение заряженных частиц затруднено или вообще невозможно, называются изоляторами (диэлектриками). Часто встречающиеся материалы-диэлектрики — это кварц или эбонит, искусственный изолятор.

Вывод

На практике современное оборудование работает с большими величинами тока, до сотни, а то и тысячи ампер, а также и с малыми значениями. Примером в повседневной жизни величины тока в разных приборах может быть электрическая плита, где она достигает значения в 5 А, а простая лампа накаливания может иметь величину 0,4 А, в фотоэлементе величина проходящего тока измеряется в микроамперах. В линиях городского общественного транспорта (троллейбус, трамвай) значение проходящего тока достигает 1000 А.

Похожие статьи:

domelectrik.ru

Сила тока. Единицы силы тока. Амперметр (Гребенюк Ю.В.). Видеоурок. Физика 8 Класс

На данном уроке, тема которого «Сила тока. Единицы силы тока. Амперметр», мы познакомимся с такой характеристикой тока, как сила, поговорим о единицах её измерения, а также о приборе, с помощью которого можно измерять силу тока в цепи, – об амперметре.

На предыдущих уроках мы говорили о токе в металле, также обсудили электрическую цепь и её составные части, говорили о направлении тока. Однако мы не касались такого вопроса, как характеристики, с помощью которых можно описать электрический ток. Наверное, все вы слышали о выражении «скачок напряжения» и наблюдали мигание лампочки. То есть мы понимаем, что электрические токи бывают разными, а как же можно сравнивать электрические токи? Какие характеристики тока позволяют оценивать его величину и другие его параметры? Сегодня мы начнем изучать величины, которые характеризуют электрический ток, и начнем мы с такой характеристики, как сила тока.

Вы уже знаете, что в металлическом стержне достаточно большое количество носителей электрического заряда – электронов. Понятно, когда по стержню не течет электрический ток, эти электроны движутся хаотически, то есть можно считать, что количество электронов, которое проходит через сечение стержня слева направо, приблизительно равно количеству электронов, которое проходит через то самое сечение стрежня справа налево за одно и то же время. Если мы пропускаем по стержню электрический ток, то движение электронов становится упорядоченным и количество электронов, которое проходит через сечение стержня за промежуток времени, существенно возрастает (имеется в виду то количество электронов, которое проходит в одном направлении).

Сила тока – это физическая величина, характеризующая электрический ток и численно равная заряду, проходящему через поперечное сечение проводника за единицу времени. Силу тока обозначают символом  и определяют по формуле: , где  – заряд, проходящий через поперечное сечение проводника за время .

Чтобы лучше понять суть введенной величины, давайте обратимся к механической модели электрической цепи. Если рассмотреть водопроводную систему вашей квартиры, то она может оказаться поразительно похожей на электрическую цепь. Действительно, аналогом источника тока выступает насос, который создает давление и поставляет воду в квартиры (см. рис .1).

Рис. 1. Водопроводная система

Как только он перестанет работать, исчезнет вода в кранах. Краны выступают в роли ключей электрической цепи: когда кран открыт – вода течет, когда закрыт – нет. В роли заряженных частиц выступают молекулы воды (см. рис. 2).

Рис. 2. Движение молекул воды в системе

Если мы теперь введем величину, аналогичную только что введенной силе тока, то есть количеству молекул воды через сечение трубы за единицу времени, то фактически получим количество воды, проходящей через поперечное сечение трубки за одну секунду – то, что в быту часто называют напором. Соответственно, чем больше напор, тем больше воды вытекает из крана, аналогично: чем больше сила тока, тем сильнее ток и его действие.

Единицей силы тока является ампер: . Эта величина названа в честь французского ученого Андре-Мари Ампера. Ампер – одна из единиц интернациональной системы. Зная единицы силы тока, легко получить определение единицы электрического заряда в СИ. Поскольку , то .

Следовательно, . То есть 1 Кл – это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в проводнике 1 А. Кроме ампера, также применяют такие величины, как миллиампер (), микроампер (), килоампер (). Чтобы представлять себе, что такое малая, а что такое большая сила тока, приведем такие данные: для человека считается безопасной сила тока, меньше 1 мА, а сила тока, больше 100 мА, может привести к существенным проблемам со здоровьем.

Некоторые значения силы тока

Чтобы понимать величину такой силы тока, как 1А, давайте рассмотрим следующую таблицу.

Рентгеновский медицинский аппарат (см. рис. 3) – 0,1 А

Рис. 3. Рентгеновский медицинский аппарат

Лампочка карманного фонаря – 0,1–0,3 А

Переносной магнитофон – 0,3 А

Лампочка в классе – 0,5 А

Мобильный телефон в режиме работы – 0,53 А

Телевизор – 1 А

Стиральная машина – 2 А

Электрический утюг – 3 А

Электродоильная установка – 10 А

Двигатель троллейбуса – 160–220 А

Молния – более 1000 А

Кроме того, рассмотрим эффекты действия тока, которые он оказывает на организм человека, в зависимости от силы тока (в таблице приведена сила тока при частоте 50 Гц и эффект действия тока на человеческий организм).

0–0,5 мА        Отсутствует

0,5–2 мА        Потеря чувствительности

2–10 мА         Боль, мышечные сокращения

10–20 мА       Растущее воздействие на мышцы, некоторые повреждения

16 мА             Ток, выше которого человек уже не может освободиться от электродов

20–100 мА     Дыхательный паралич

100 мА – 3 А Смертельные желудочковые фибрилляции (необходима срочная реанимация)

Более 3 А       Остановка сердца, тяжелые ожоги (если шок был кратким, то сердце можно реанимировать)

Вместе с тем большинство приборов рассчитано на значительно большее значение силы тока, поэтому при работе с ними очень важно соблюдать некоторые правила. Остановимся на главных моментах, которые нужно помнить всем, кто имеет дело с электричеством.

Нельзя:

1) Прикасаться к обнаженному проводу, особенно стоя на земле, сыром полу и т.п.

2) Пользоваться неисправными электротехническими устройствами.

Собирать, исправлять, разбирать электротехнические устройства, не отсоединив их от источника тока.

Для измерения силы тока используется прибор – амперметр. Он обозначается буквой А в кружочке при схематическом изображении в электрической цепи. Как и любой прибор, амперметр не должен влиять на значение измеряемой величины, поэтому он сконструирован таким образом, чтобы практически не менять значение силы тока в цепи.

Правила, которые необходимо соблюдать при измерении силы тока амперметром

1) Амперметр включают в цепь последовательно с тем проводником, в котором необходимо измерять силу тока (см. рис. 4).

2) Клемму амперметра, возле которой стоит знак +, нужно соединять с проводом, идущим от положительного полюса источника тока; клемму со знаком минус – с проводом, идущим от отрицательного  полюса источника тока (см. рис. 5).

3) Нельзя подключать амперметр к цепи, где отсутствует потребитель тока (см. рис. 6).

Рис. 4. Последовательное соединение амперметра

Рис. 5. Правильно соединена клемма +

Рис. 6. Неверно подключенный амперметр

Давайте посмотрим на работу амперметра вживую. Перед нами электрическая цепь, которая состоит из источника тока, амперметра, который соединен последовательно, и лампочки, которая также соединена последовательно (см. рис. 7).

Рис. 7. Электрическая цепь

Если сейчас включим источник тока, то сможем пронаблюдать, какая сила в цепи с помощью амперметра. Вначале он указывает 0 (то есть тока в цепи нет), а теперь видим, что сила тока стала почти 0,2 А (см. рис. 8).

Рис. 8. Протекание тока в цепи

Если мы изменим ток в цепи, увидим, что сила тока увеличится (станет примерно 0,26 А), и при этом лампочка загорится ярче (см. рис .9), то есть, чем больше сила тока в цепи, тем ярче лампочка горит.

Рис. 9. Сила тока в цепи больше – лампочка горит ярче

Виды амперметров

Распространение получили амперметры электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные.

В электромагнитных амперметрах (см. рис. 10) измеряемый ток, проходя по катушке, втягивает внутрь ее сердечник из мягкого железа с силой, возрастающей с увеличением силы тока; при этом насаженная на одной оси с сердечником стрелка поворачивается и по градуированной шкале указывает силу тока в амперах.

Рис. 10. Электромагнитный амперметр

В тепловых амперметрах (см. рис. 11) измеряемый ток пропускается по натянутой металлической нити, которая вследствие нагревания током удлиняется и провисает, поворачивая при этом стрелку, указывающую на шкале силу тока.

Рис. 11. Тепловой амперметр

В магнитоэлектрическом амперметре (см. рис. 12) под влиянием взаимодействия измеряемого тока, пропускаемого по проволоке, намотанной на легкую алюминиевую рамку, и магнитного поля постоянного подковообразного магнита рамка вместе с указательной стрелкой поворачивается на больший или меньший угол в зависимости от величины силы тока.

Рис. 12. Магнитоэлектрический амперметр

В электродинамических амперметрах (без железа) (см. рис. 13) измеряемый ток пропускается последовательно по обмотке неподвижной и подвижной катушек; последняя благодаря взаимодействию проходящего по ней тока с током в неподвижной катушке поворачивается вместе со стрелкой, указывающей силу тока.

Рис. 13. Электродинамический амперметр

В индукционных приборах (см. рис. 14) подвижный металлический диск или цилиндр подвергается воздействию бегущего или вращающегося поля, создаваемого неподвижными катушками, соединенными магнитной системой.

Рис. 14. Индукционный амперметр

Тепловые и электродинамические амперметры пригодны для измерения как постоянного, так и переменного токов, электромагнитные – для постоянного тока и индукционные – для переменного

Решение задач

Рассмотрим решение нескольких типовых задач по данной теме.

Задача 1

Сколько электронов каждую секунду проходит через поперечное сечение проводника, если по нему течёт ток 0,32 А?

Решение

Мы знаем не только силу тока I = 0,32 A, время t = 1 c, но и заряд одного электрона: .

Воспользуемся определением силы тока: , а заряд, который проходит за единицу времени по модулю, равен сумме модулей зарядов электронов, которые проходят через сечение за 1 с. Получаем . Откуда .

Проверяем единицы искомой величины: .

Ответ: .

Задача 2

Почему амперметр, который показывает силу тока, идущего через провод, которым аккумулятор автомобиля соединяется с бортовой электрической сетью, имеет на шкале и положительные, и отрицательные значения?

Решение

Дело в том, что в автомобильном аккумуляторе происходят два процесса: иногда он заряжается (см. рис. 15), то есть получает заряд (заряды движутся в одну сторону), а иногда – питает бортовую сеть, то есть отдаёт заряд (соответственно, заряды движутся в другую сторону) (см. рис. 16). В этих двух случаях сила тока будет отличаться знаком.

Рис. 15. Зарядка аккумулятора

Рис. 16. Разрядка аккумулятора

Задача 3

В проводнике в каждом кубическом сантиметре содержится  свободных электронов. С какой средней скоростью электроны упорядоченно двигаются по проводнику, если сила тока в нём 8 А? Площадь поперечного сечения проводника составляет 1 мм2.

Решение

Мы знаем силу тока I = 8 A, площадь сечения , заряд одного электрона , объём  и количество электронов в этом объёме . Найти необходимо скорость .

Рассмотрим кубический сантиметр проводника. В нём содержится известное количество свободных электронов. Что такое средняя скорость их движения? . Как определить расстояние?

Для начала воспользуемся определением силы тока: , а заряд, который проходит за единицу времени, по модулю равен сумме модулей зарядов электронов, которые проходят через сечение за время. Получаем . Откуда – количество электронов, которые прошли через сечение проводника за единицу времени. Из несложной пропорции определяем объём, который занимают эти электроны: , откуда .

Теперь найти расстояние, пройденное электронами, несложно: если весь этот объём прошёл через сечение, то длина пути каждого электрона равна: .

Получаем итоговую формулу: .

Проверяем единицы измерения: .

Ответ:

На следующем уроке мы поговорим о еще одной характеристике тока – напряжении. На этом наш урок окончен, спасибо за внимание!

 

Домашнее задание

  1. Что такое сила тока? В чем она измеряется в СИ?
  2. Как в цепь подключают амперметр?
  3. Какие виды амперметров вы знаете? Опишите принцип их работы.

 

Список рекомендованной литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В. Физика:  Учебник 8 класс. — Издательство: М.: 2013. – 240 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Class-fizika.narod.ru (Источник).
  2. Интернет-портал Yaklass.ru (Источник).

interneturok.ru

0 comments on “Сила тока как обозначается – Основные величины и меры электрического тока

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *