Стабилизатор тока на кренке – Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Стабилизаторы КРЕН 142


Стабилизаторы КРЕН серии КР142ЕН5-9 с постоянным положительным напряжением на выходе в диапазоне 5-27В широко применяются в самых различных электронных устройствах. Те напряжения, которые можно получить применяя данные стабилизаторы КРЕН 142, позволяют использовать их в блоках питания бытовой радиоэлектроники, промышленных устройств, измерительной техники и т.д.
Путём добавления в типовые схемы включения дополнительных элементов можно превратить эти источники фиксированного напряжения в источники с регулированием напряжения и тока. Если стабилизатор КРЕН 142 находится далеко (длина соединяющих проводов 1 метр и более) от фильтрующих конденсаторов выпрямителя, то на его входе необходимо также установить электролитический конденсатор. Эти стабилизаторы являются аналогами импортных стабилизаторов серии 78xx.

 

Схема КРЕН 142

Типовая

схема КРЕН 142 стабилизатора, а также цоколевка КРЕН показаны на рисунках.

 

Стабилизаторы КРЕН (с фиксированным напряжением)

Условное
обозначение
АналогПараметры
Uвых.
ном.
В
Uвых.
мин.
В
Uвых.
макс.
В
Iвых.
макс.
А
Uвх.
макс.
В
Кнест.
напр.
макс.
%/В
Кнест.
тока
макс.
%/А
КР142ЕН5А5.04.95.11.5150.051.33
КР142ЕН5Б6.05.886.121.5 150.051.33
КР142ЕН5В78055.04.825.182.0150.051.33
КР142ЕН5Г78066.05.796.212.0150.051.33
КР142ЕН8А9.08.739.271.5350.051.0
КР142ЕН8Б12.011.6412.361.5
35
0.051.0
КР142ЕН8В15.014.5515.451.5350.051.0
КР142ЕН8Г78099.08.649.361.0300.11.5
КР142ЕН8Д781212.011.5212.481.0300.11.5
КР142ЕН8Е781515.014.415.61.0300.1 1.5
КР142ЕН9А20.019.620.41.5400.050.67
КР142ЕН9Б24.023.5224.481.5400.050.67
КР142ЕН9В27.026.4627.541.5400.050.67
КР142ЕН9Г782020.019.420.61.0350.1
1.5
КР142ЕН9Д782424.023.2824.721.0350.11.5
КР142ЕН9Е782727.026.1927.811.0350.11.5
КР142ЕН9К782727.01.540

katod-anod.ru

Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

Минимальные емкости конденсаторов:

ПараметрВходной С1Выходной С2
Минимальная емкость для керамического или танталового, мкФ2,21
Минимальная емкость для электролитического, мкФ1010

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В4,9…5,15,88…6,124,82…5,185,79…6,21
Температурный коэффициент напряжений,0,020,020,030,03
Максимальный выходной ток, А221,51,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

hardelectronics.ru

РадиоКот :: Блок питания

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Блок питания

Привет, кого не видел.

В этой части, как и обещалось, мы поговорим о еще одном типе стабилизаторов – компенсационном . Как видно из названия (название видно, нет?), принцип действия их основан на компенсации чего то чем то. Чего и чем сейчас узнаем. Для начала, рассмотрим схему простейшего компенсационного стабилизатора. Его схема более сложная, чем обычного параметрического, но совсем чуть-чуть.

Схема состоит из следующих узлов:

 

  1. Источник опорного напряжения (ИОН) на R 2, D 1, который сам по себе является параметрическим стабилизатором.
  2. Делителя напряжения R3-R5 .
  3. Усилителя постоянного тока (УПТ) на транзисторе VT 1
  4. Регулирующего элемента на транзисторе VT 2.

 

Работает весь этот зоопарк следующим образом. ИОН выдает опорное напряжение, равное напряжению на выходе стабилизатора на эмиттер VT 1. Напряжение с делителя поступает на базу VT 1. В результате, этому бедолаге приходится решать, что же делать с напряжением на коллекторе – то ли оставить все как есть, то ли увеличить, то ли уменьшить. И чтобы сильно не морочиться, он поступает так – если напряжение на базе меньше опорного (которое на эмиттере), он увеличивает напряжение на коллекторе, открывая сильнее, таким образом, транзистор VT 2 и увеличивая напряжение на выходе, если же напруга на базе больше опорного, то происходит обратный процесс. В результате всей этой возни, напряжение на выходе остается неизменным, то есть стабилизированным, что и требуется. Причем, по сравнению с параметрическими стабилизаторами, коэффициент стабилизации у компенсационных значительно выше. Так же выше и КПД. Резистор R 4 нужен для подстройки в небольших пределах выходного напряжения стабилизатора.


Ну а теперь перейдём к сладкому – к стабилизаторам на микросхемах. Я их называю стабилизаторами для ленивых, поскольку на пайку такого стабилизатора уходит минуты две, если не меньше. Чтобы сильно не тянуть резину, сразу переходим к схеме, хотя схема то…

Итак, перед вами схема, которая до отвращения проста. В ней всего три элемента, причем обязательным является только один – микросхема DA 1. Кстати, сказать, интегральные стабилизаторы по своей сущности являются компенсационными. Нуте-с, что же нам требуется? Только одно – знать напряжение, которое мы хотим получить от стабилизатора. Дальше мы идём в табличку и выбираем себе микросхемку по душе.

Микросхема

Напряжение стабилизации, В

Макс. ток, А

Расс. Мощн., Вт

Потребл. Ток мА

(К)142ЕН5А
(К)142ЕН5Б
(К)142ЕН5В
(К)142ЕН5Г

5±0,1
6±0,12
5±0,18
6±0,21

3,0
3,0
2,0
2,0

5

10

(К)142ЕН8А
(К)142ЕН8Б
(К)142ЕН8В

9±0,15
12±0,27
15±0,36

1,5

6

10

К142ЕН8Г
К142ЕН8Д
К142ЕН8Е

9±0,36
12±0,48
15±0,6

1,0

6

10

(К)142ЕН11

1.2…37

1.5

4

7

(К)142ЕН12
КР142ЕН12А

1.2…37
1,2…37

1.5
1,0

1
1

5

КР142ЕН18А
КР142ЕН18Б

-1,2…26,5
-1,2…26,5

1,0
1,5

1
1

5

Напряжение на входе микросхемы должно быть как минимум на 3 вольта выше, чем выходное, но не должно превышать 30 вольт. Ну собственно и все.

Что, что? Тебе нужно не 15 вольт, а 14? Экий ты капризный. Ну да ладно. В качестве поощрительного приза (правда, пока не знаю за что) расскажу еще про одну схемку.

Разумеется, кроме стабилизаторов с фиксированным напряжением, существуют интегральные стабилизаторы, специально заточенные под регулируемое напряжение. Итак, внимание на схему! Встречаем – КРЕН12А (можно и Б) – регулируемый стабилизатор напряжения 1,3-30 вольт и максимальным током 1,5 А.

Кстати, у нее есть и буржуйский аналог – LM 317 (на схеме нумерация выводов для нее дана в скобках). Входное напряжение не более 37 вольт. Если очень хочется, в этой схеме есть что посчитать. Во всяком случае, если у тебя не нашлось резистора 240 Ом, можно воткнуть и другой, при этом пересчитав резистор R 2. Для чего существует хитрая формула.

В формуле участвуют:
U опор = 1.25 В – внутреннее опорное напряжение микросхемы между 2-м и 8-м выводом, см. схему;
I опор – управляющий ток, текущий через резистор R 2.

Вообще говоря, формулу можно упростить, благодаря тому, что этот самый управляющий ток очень и очень мал – порядка 0,0055А, то есть на результат он практически не влияет.

 

Отсюда получаем, что:

Ну, теперь посчитаем.
Для начала возьмем МИНИМАЛЬНОЕ значение выходного напряжение, которое ты хочешь получить.
Итак, R1=240 Ом, Uвых=1,3 В, Uопор=1,25 В. Тогда:
R2=240(1,3-1,25)/1,25 = 9,6 Ом

После, берем МАКСИМАЛЬНОЕ напряжение, которое должен выдавать наш стабилизатор:
R1=240 Ом, Uвых=30 В, Uопор=1,25 В

R2=240(30-1,25)/1,25=5500 Ом, что есть 5,5 кОм.
Таким образом, для того чтобы напряжение на выходе стабилизатора изменялось от минимального до максимального нам нужно чтобы сопротивление резистора R2 изменялось от 9,6 Ом до 5,5кОм.
Подбираем ближайший к этому значению — у меня оказался — 4,8 кОм.

Такие вот пироги. Кстати, пока не забыл – микросхемы обязательно надо ставить на радиатор, иначе они сдохнут, причем довольно шустро. Правда грустно.

Внешне, микросхемка в корпусе КТ28-2 выглядит вот таким образом:

Хочу обратить особое внимание на то, что хотя LM317 и является полным функциональным аналогом КРЕН12А, расположение выводов у этих микросхем НЕ СОВПАДАЕТ, если КРЕН12 выполнена в вышеозначенном корпусе.

Расположение выводов микросхемы LM317. Так же распологаются выводы КРЕН12, если она выполнена в корпусе ТО-200:

Теперь точно все.

Удачи! 🙂

<<—Часть 2—


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

принцип работы, импульсная модель, универсальный регулируемый прибор

Чтобы эффективно побороть различные помехи в сети, необходимо использовать простые стабилизаторы тока. Современные производители занимаются промышленным изготовлением таких устройств, благодаря чему каждая модель отличается своими функциональными и техническими характеристиками. В бытовой отрасли нет больших требований к стабилизаторам тока, но высококачественное измерительное оборудование всегда нуждается в стабильном напряжении.

Краткое описание

Опытные мастера прекрасно знают, что простейшие ограничители тока представлены в виде обычных резисторов. Такие агрегаты часто называют стабилизаторами, что не является действительностью, так как они не способны убрать все помехи при колебании напряжения на своём входе. Использование резистора в схеме питания того или иного прибора возможно только в том случае, если всё входное напряжение стабилизируется.

В иной ситуации даже мельчайшие скачки напряжения воспринимаются как повышенная нагрузка, что негативно отражается на работе всего устройства. Эффективность работы резистивных ограничителей тока является довольно низкой, так как потребляемая ими энергия рассеивается в виде тепла.

Более высоким уровнем КПД обладают те конструкции, которые изготовлены на базе готовых интегральных микросхем линейных стабилизаторов. Схемы таких устройств отличаются минимальным набором элементов, простотой настройки и отсутствием помех. Чтобы избежать нежелательного перегрева регулирующего элемента, различия между входным и выходным напряжением должны быть минимальными. В противном случае корпус микросхемы будет вынужден рассеивать всю невостребованную энергию, что в несколько раз снижает итоговый показатель КПД.

Наибольшей эффективностью обладают схемы с широтно-импульсной модуляцией. Их производство основано на использовании универсальных микросхем, где присутствует цепь обратной связи и специальные защитные механизмы, благодаря чему существенно возрастает надёжность всего устройства. Использование импульсного трансформатора ведёт к удержанию схемы, что положительно влияет на уровень КПД и продолжительность эксплуатационного срока. Стоит отметить, что такие стабилизаторы мастера часто изготавливают своими руками, используя для этого специальные детали.

Функциональные возможности

Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.

В каждом таком изделии присутствует незаменимый элемент — трансформатор, который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.

Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.

Стоит отметить, что в традиционной схеме присутствуют мощные высоковольтные выпрямители, которые помогают определить полярность напряжения. А вот конденсаторы участвуют в качественной стабилизации тока, резисторы устраняют имеющиеся помехи.

Изготовление простого преобразователя для светодиодов

Опытные мастера согласятся, что собрать качественный и долговечный стабилизатор не так уж и сложно. Главная особенность состоит в том, что на блок может быть установлена целая система низковольтных конденсаторов на 20 вольт, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор, выполненный своими руками — это вариант LM317. Потребуется только правильно рассчитать резистор для используемого светодиода с помощью специализированного онлайн-калькулятора.

Важным фактом остаётся то, что для слаженной работы такого агрегата отлично подходит подручное питание:

  • Стандартный блок на 19 вольт от ноутбука.
  • На 24 В.
  • Более мощный агрегат на 32 вольт от обычного принтера.
  • Либо на 9 или на 12 вольт от какой-либо бытовой электроники.

К основным преимуществам такого преобразователя всегда относят его доступность, минимальное количество элементов, высокую степень надёжности, а также наличие в магазинах. Собирать самостоятельно более сложную схему весьма нерационально. Если мастер не обладает необходимым опытом, тогда импульсный стабилизатор тока лучше купить в готовом виде. При необходимости его всегда можно усовершенствовать.

Продолжительность работы светодиода без потери яркости зависит от режима. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно сжечь. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора. Сам процесс сборки состоит из нескольких основных этапов:

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включённого в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора).
  4. После внимательной проверки правильности соединений перед подключением собирается цепь.

Для любого устройства можно добиться подачи 10 А (задаётся низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения. Максимальная мощность LM317 — 1.5 ампер. Если есть необходимость увеличить ток, то в схему можно добавить полевой или обычный транзистор.

Универсальная регулируемая модель

Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.

Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.

Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.

Многофункциональный прибор

Среднюю сложность изготовления имеют драйверы для светодиодов на 220 В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство из них также возможно доработать, узнав модель контроллера преобразователя. Параметры обычно задаются одним или несколькими резисторами.

В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Незаменимое устройство постоянного тока

Даже начинающий мастер знает, что такой агрегат работает по принципу двойного интегрирования. Абсолютно во всех моделях за этот процесс отвечают преобразователи. Универсальные двухканальные транзисторы предназначены для увеличения существующих динамических характеристик. Важно помнить, что для устранения тепловых потерь нужно использовать конденсаторы с большой ёмкостью.

Сделать показатель выпрямления можно только благодаря точному расчёту необходимого значения. Как показывает практика, если при выходном напряжении постоянного тока получается 12 ампер, то предельное значение должно составлять 5 В. Устройство сможет стабильно поддерживать рабочую частоту на отметке 30 Гц. Относительно порогового напряжения — всё зависит от блокировки сигнала, который поступает от трансформатора. Но фронт импульсов не должен превышать 2 МКС.

Только качественное преобразование тока позволяет обеспечить слаженную работу главных транзисторов. В этой схеме допускается использование исключительно полупроводниковых диодов. Если резисторы балластные, то это чревато большими тепловыми потерями. Именно поэтому коэффициент рассевания существенно увеличивается. Мастер может увидеть, что амплитуда колебаний возросла, а процесс индуктивности не произошёл.

Современная схема на базе КРЕН

Такое устройство будет стабильно работать только с элементами LM317 и КР142ЕН12. Это связано с тем, что они выступают в качестве универсальных стабилизаторов напряжения, хорошо справляясь с током до 1.5 А и выходным напряжением до 40 вольт. В классическом тепловом режиме эти элементы способны качественно рассеивать мощность до 10 Ватт. Сами микросхемы отличаются низким собственным потреблением, так как этот показатель составляет всего 8 мА. Главное, что этот показатель остаётся неизменным даже в том случае, если напряжение колеблется.

Отдельного внимания заслуживает микросхема LM317, которая способна удерживать постоянное напряжение на основном резисторе. Этот агрегат с неизменным сопротивлением обеспечивает максимальную стабильность проходящего через него тока, благодаря чему его часто называют токозадающим резистором. Современные стабилизаторы на КРЕН отличаются от своих аналогов относительной простотой, за счёт чего активно эксплуатируются в качестве зарядки для аккумуляторов и для электронной нагрузки.

220v.guru

Как из КРЕНки сделать импульсный преобразователь. . Технические обзоры.

Решил вот снять видео на тему линейные и импульсные стабилизаторы напряжения.
В видео вы увидите пример реализации импульсного стабилизатора на базе всем известного стабилизатора КРЕН или LM78xx. В данном случае использовалась LM7805.

Часть материалов взята из моего старого обзора, но добавлен наглядный тест.

Схема устройства

Печатная плата

Готовое изделие

Буду рад предложениям по темам для следующих видеороликов.

Эту страницу нашли, когда искали:
крен схемы, импульсный стабилизатор 1221, схема необычного устройства на кренке, преобразователь на кренке, схема стабилизатора напряжения на кренке и мощном регулирующем транзисторе, импульсный стабилизатор на крен8, схема блока питания на крен8 и его умощнение, защизают ли кренки от высокочастотных, блок питания транзистор крен, схема стабелизированного блока питания на кренках, кренка подключение, схема защиты по току для кренки7812, схема импульсного стабилизатора на крен, схемы бп на кренах, стабилизатор напряжения из кренки, 7805 схема транзистор, импульсный преоброзователь из кренки, схема преобразователя напряжения на крен, emp8110 что за кренка как регулировать напряжение, преобразователь со стабилизацией на 7805, как сделать регулируемый блок питания на кренке и транзисторе, стабилизатор из линейного в импульсный, импульсный стабилизатор напряжения на крен, 7805 в импульсном режиме, кренка нестандартная схема применения


Вас может заинтересовать


Товары по сниженной стоимости


Комментарии: 3



www.kirich.blog

Нестандартные напряжения на крен 142 стабилизаторе

Трех-выводные стабилизаторы напряжения настолько прочно вошли в нашу действительность, что многие уже и не представляют себе стабилизированные источники питания без них.
Унификация схем, а также переход к интегральным полупроводниковым стабилизаторам повлек за собой и унификацию питающих напряжений для них.

На свет появились микросхемы, которые имеют всего 3 вывода: вход, выход и общую шину и позволяют получать стабилизированное напряжение строго заданных параметров, не требуя при этом никаких дополнительных элементов.

Так как жизнь не стоит на месте, то и номенклатура напряжений выпускаемых «КРЕНок» с неизменным выходным напряжением давно уже перестала удовлетворять требованиям текущего времени. В аппаратуре появились другие напряжения, которые отличаются от предлагаемых напряжений выпускаемых ИМС стабилизаторов.

В литературе предлагается немало способов, как найти выход из данной ситуации. Эти предложения сводятся в основном к «подпору» общего вывода 3-выводных микросхем стабилитроном или переменным резистором для получения, к примеру, с помощью ИМС хх7805 выходного напряжения выше 5 В.

А если необходимо стабилизированное напряжение ниже 5 В? Конечно, можно воспользоваться LM317 (КР142ЕН12), но в её стандартной схеме включения невозможно получить напряжение, например, в 1 В. К тому же применение LM317 (КР142ЕН12) усложняет схему из-за элементов обвязки. И часто бывает так, что, особенно при ремонте и макетировании, напряжение
нужно «здесь и сейчас», а LM317 (КР142ЕН12) будут только завтра в магазине или на складе.

Вашему вниманию предлагается несколько необычный способ получения стабильных значений напряжений, 3-выводные стабилизаторы для которых либо не существуют в природе, либо еще мало распространены. Способ заключается в получении нужного напряжения как разницы между большим и меньшим значениями на выходах «КРЕНок» (рис.1).

Например, чтобы получить напряжение 1 В, нужно на вход микросхемы ХХ7806 подать нестабилизированное напряжение от диодного моста VD1, а на вход микросхемы ХХ7905 — нестабилизированное напряжение от диодного моста VD2. Как разность значений положительного напряжения +6 В и отрицательного -5В на выходе устройства будет +1 В.

Это станет возможным потому, что с выхода ST2 -5В подается на общую шину ST1. Внутренняя структура этой микросхемы выполнена так, что позволяет производить сложение напряжений по уровню на входе с соответствующим значением напряжения на выходе благодаря тому, что общая шина ST1 оказалась оторванной от общего провода схемы.

Общим проводом схемы является искусственная средняя точка, образованная минусовым выводом диодного моста VD1 и плюсовым выводом диодного моста VD2. Чтобы не было короткого замыкания, «переменные» входы моста VD2 подключены к обмотке понижающего трансформатора Тр1 через разделительные конденсаторы С2, СЗ. Такое схемотехническое решение заимствовано из [1].

Конечно же, имея в наличии трансформатор со средним выводом вторичной обмотки, можно заметно упростить схему, отказавшись от элементов VD2, С2, С3, но такой вариант на практике не всегда возможен. Для получения напряжения 1.5В необходимо, применяя в качестве ST1 ХХ7808, а в качестве ST2 ХХ7906, включить в разрыв плюсового выхода схемы кремниевый диод (на рисунке показан пунктиром).

Таблица напряжений крен 142

В таблице приводятся значения входных напряжений и типы применяемых микросхем для получения значений напряжений 1; 1.5; 2; 2.5; 3; 3.5; 4 В. Стабилизатор ST2 практически не греется, поэтому в его качестве можно использовать микросхемы в корпусе ТО-92. При эксплуатации устройства с током в нагрузке менее 0.5А емкости всех конденсаторов можно уменьшить в 2 раза по сравнению с указанными на рисунке.

Конечно, указанными выше значениями напряжений возможности схемы (см. рисунок) не ограничиваются. Предложенным способом можно получить также отрицательные выходные напряжения. Для этого необходимо «перевернуть» диодные мосты VD1 и VD2, поменять местами ST1 и ST2, а также изменить полярность включения всех конденсаторов и диода D1.

Предложенные схемы можно использовать для питания готовых конструкций, при макетировании, для зарядки маломощных аккумуляторов, при ремонтах и апгрейде аппаратуры. При этом нужно обязательно учитывать различия цоколевки микросхем для положительных и отрицательных напряжений.

www.radiochipi.ru

Стабилизатор КР142ЕН5А. Описание, характеристики и схема включения

Производимый отечественной промышленностью интегральный линейный стабилизатор КР142ЕН5А представляет собой 3-х контактный стабилизатор, имеющий на выходе постоянное и фиксированное напряжение в 5 вольт.

Область применения – в качестве источника питания для измерительной техники, логических систем, приборов высококачественного воспроизведения и прочих радио-электронных устройств. При необходимости стабилизатор КР142ЕН5А можно заменить аналогом — другим стабилизатором напряжения 7805 (78L05).

 

Основные характеристики КР142ЕН5А

  • Выходное напряжение: 5В
  • Выходной ток: 2 А
  • Максимальное входное напряжение: 15 В
  • Разность напряжения вход-выход: 2,5 В
  • Мощность рассеивания (с радиатором): 10 Вт
  • Точность выходного напряжения: 0,05 В

Максимальные значения работы КР142ЕН5А:

  • Рассеиваемая мощность: внутренне ограничена
  • Температур хранения: -55 … +150С
  • Диапазон (рабочий) температур кристалла: -45 … +125С 

Особенности стабилизатора КР142ЕН5А:

  • Коррекция участка безопасной работы выходного транзистора
  • Внутренняя защита от перегрева кристалла
  • Внутренний ограничитель тока короткого замыкания

 

 Типовая схема включения КР142ЕН5А

Конечно же, главное предназначение КР142ЕН5А — источник постоянного и фиксированного напряжения 5 вольт, но, несмотря на это, данный вид стабилизатора может быть применен и как простой блок питания с функцией регулировки выходного напряжения в диапазоне 5,6…13 вольт. Этого можно добиться путем добавления нескольких внешних компонентов.

Выпрямленное и нестабилизированное напряжение +15 вольт с диодного моста поступает на вход (1) стабилизатора КР142ЕН5А. На управляющий вывод (2) поступает напряжение с выхода (3) стабилизатора через транзистор VT1. Величина этого напряжения выставляется переменным резистором R2. Положение движка резистора в верхнем положении определяет минимальное значение напряжение (5,6В) на выходе регулируемого блока питания

Минимальное выходное напряжение 5,6 В формируется из стандартного выходного напряжения стабилизатора (5В) и напряжения между эмиттером и коллектором (0,6В) открытого транзистора VT1.

Емкость С2 сглаживает пульсации, а емкость С1 защищает от вероятного ВЧ возбуждения микросхемы. Ток нагрузки стабилизатора может доходить до 2 А. Для нормальной работы стабилизатора его необходимо разместить на радиаторе.

www.joyta.ru

0 comments on “Стабилизатор тока на кренке – Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *