Устройство и принцип работы электродвигателя – Устройство и принцип работы электродвигателя

Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Содержание статьи

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

 

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

 

Понравилась статья? Поделиться с друзьями:

elektro-enot.ru

Принцип работы электродвигателя — устройство и отличия разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

Устройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

В бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

elektrik24.net

Устройство и принцип работы электродвигателя переменного тока

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

jelektro.ru

Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Асинхронный двигатель с креплением к фланцу

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Устройство асинхронного электродвигателя

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Устройство синхронного электродвигателя

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

cable.ru

принцип работы, из чего состоит?

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.
Классическая конструкция электродвигателя — ротор внутри статора

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Электродвигатель с внешним ротором

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Линейный электродвигатель

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Далее рассмотрим, как работает электродвигатель, изготовленный соответственно напряжению электропитания — постоянному или переменному.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель, устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Принцип работы асинхронного двигателя

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Разновидности асинхронного двигателя

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Фазный ротор

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

Элементы синхронно-гистерезисного движка

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Синхронный двигатель

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Коллекторные двигатели

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Коллекторные двигатели

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Ротор ДПТ (а также универсального движка)

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Пояснение принципа работы униполярного двигателя

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Похожие статьи:

domelectrik.ru

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки. Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре. Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др. Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии. А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Классификация электродвигателей

Электродвигатель, является разновидностью электромашин по:

  • Специфике, создающегося вращательного момента:
    • гистерезисные;
    • магнитоэлектрические.
  • Строению крепления:
    • с горизонтальным расположением вала;
    • с вертикальным размещением вала.
  • Защите от действий внешней среды:
    • защищённые;
    • закрытые;
    • взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:

  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).
Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Типы электродвигателей:

  • С электромагнитами.
  • С постоянными магнитами.

Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:

  • Коллекторные. В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей:
    • параллельное;
    • последовательное;
    • смешанное.
  • Коллекторные устройства имеют несколько минусов:
    • Низкая надёжность приборов.
    • Щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные). Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:

  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).

Минусы двигателей:

  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.
Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными. Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Синхронный электродвигатель

Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:

  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый  электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:

  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.

Недостатки в синхронных устройствах:

  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа. Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл. В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора. Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:

  • С фазным ротором.
  • С короткозамкнутым ротором.

В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. По числу обмоток выделяют такие электродвигатели:

  • Однофазные. Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные. В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой.
    Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные. Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные. Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:

  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.

Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:

  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются. Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр. В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Похожие темы:

electrosam.ru

Принцип работы электродвигателя. Простыми словами о сложном

Принцип работы электродвигателя основывается на эффекте обнаруженном Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита, может возникнуть непрерывное вращение.

   Принцип работы электродвигателя постоянного тока

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положение, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке выше это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

 

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

Простыми словами о сложном

На самом деле там векторное произведение, дифференциалы и т.п. но это детали, а у нас упрощённый случай. И так…

 

   Рис. 1 Основа работы электрического двигателя

Направление силы ампера определяется правилом левой руки.

 

   Рис. 2  Правило левой руки

Мысленно ставим левую ладонь на верхний рисунок и получаем направление сил Ампера. Она типа растягивают рамку с током в том положении как нарисовано на рис.1. И никуда вертеться тут ничего не будет, рамка в равновесии, устойчивом.

А если рамка с током повернута по-другому, то вот что будет:

   Рис. 3  Рамка

Здесь уже равновесия нет, сила Ампера разворачивает противоположные стенки так, что рамка начинает вращаться. Появляется механическое вращение. Это основа электрического двигателя, самая суть, дальше только детали.

Далее.

Теперь что будет делать рамка с током на рис.3?. Если система идеальная, без трения, то очевидно будут колебания. Если трение присутствует, то колебания постепенно затухнут, рамка с током стабилизируется и станет как на рис.1.

Но нам нужно постоянное вращение и достичь его можно двумя принципиально разными способами и отсюда и возникает разница между двигателями постоянного и переменного трёхфазного тока.

Принцип работы электродвигателя постоянного тока

Способ 1. Смена направления тока в рамке.

Этот способ используется в двигателях постоянного тока и его потомках.

Наблюдаем за картинками. Пусть наш двигатель обесточен и рамка с током ориентирована как-то хаотично, вот так например:

   Рис. 4.1 Случайно расположенная рамка

На случайно расположенную рамку действует сила Ампера и она начинает вращаться.

 
   Рис. 4.2

В процессе движения рамка достигает угла 90°. Момент (момент пары сил или вращательный момент) максимальный.

   Рис. 4.3

И вот рамка достигает положения, когда момента вращения нет. И если сейчас не отключить ток, то сила Ампера будет уже тормозить рамку и в конце полуоборота рамка остановится и начнёт вращение в противоположном направлении. Но нам ведь этого не надо.

Поэтому мы на рис.3 делаем хитрый ход – меняем направление тока в рамке.

   Рис. 4.4

И вот после пересечения этого положения, рамка с поменянным направлением тока уже не тормозится, а снова разгоняется.

   Рис. 4.5

А когда рамка подходит к следующему положению равновесия, мы меняем ток ещё раз.

   Рис. 4.6

И рамка опять продолжает ускоряться куда нам надо.

Вот так и получается постоянное вращение. Красиво? Красиво. Нужно только менять направление тока два раза за оборот и всего делов.

А делает это, т.е. обеспечивает смену тока специальный узел – щёточно-коллекторный узел. Принципиально он устроен так:

   Рис. 5

Рисунок понятен и без пояснений. Рамка трётся то об один контакт, то об другой и так вот ток и меняется.

Очень важная особенность щёточно-коллекторного узла – его малый ресурс. Из-за трения. Например, вот движок ДПР-52-Н1 – минимальная наработка 1000 часов. В то же время срок службы современных бесколлекторных двигателей более 10000 часов, а двигателей переменного тока (там тоже нет ЩКУ) более 40000 часов.

Принцип работы электродвигателя переменного тока

Способ 2. Вращается магнитный поток, т.е. магнитное поле.

Вращающееся магнитное поле получают с помощью переменного трёхфазного тока. Вот есть статор.

   Рис. 6  Статор электродвигателя

А есть значит 3 фазы переменного тока.

   Рис. 7

Между ними как видно на Рис. 7 120 градусов, электрических градусов.

Эти три фазы укладывают в статор специальным образом, чтобы они геометрически были повернуты друг к дружке на 120°.

 
   Рис. 8

И тогда при подаче трёхфазного питания получается само собой за счёт складывания магнитных потоков от трёх обмоток вращающееся магнитное поле.

   Рис. 9  Вращающееся магнитное поле

Далее вращающееся магнитное поле влияет силой Ампера на нашу рамку и она вращается.

Но здесь есть тоже различия, два разных способа.

Способ 2а. Рамка запитывается (синхронный двигатель).

Подаём значит на рамку напряжение (постоянное), рамка выставляется по магнитному полю. Помните рис.1 из самого начала? Вот так рамка и становится.

   Рис. 10  (Рис.1)

Но поле магнитное у нас тут вращается, а не просто так висит. Рамка чего будет делать? Тоже будет вращаться, следуя за магнитным полем.

Они (рамка и поле) вращаются с одинаковой частотой, или синхронно, поэтому такие двигатели называются синхронными двигателями.

Способ 2б. Рамка не запитывается (асинхронный двигатель).

Фишка в том, что рамка не запитывается, совсем не запитывается. Просто проволока такая замкнутая.

Когда мы начинаем вращать магнитное поле, по законам электромагнетизма в рамке наводится ток. От этого тока и магнитного поля получается сила Ампера. Но сила Ампера будет возникать только если рамка движется относительно магнитного поля (известная история с опытами Ампера и его походами в соседнюю комнату).

Так что рамка всегда будет отставать от магнитного поля. А то, если она его вдруг почему-то догонит, то пропадёт наводка от поля, пропадёт ток, пропадёт сила Ампера и всё вообще пропадёт. То есть, в асинхронном двигателе рамка всегда отстаёт от поля и частота у них значит разная, то есть вращаются они асинхронно, поэтому и двигатель называется асинхронным.

 

Смотрите также по этой теме:

   Как работает электродвигатель. Преимущества и недостатки разных видов.

   Асинхронный двигатель. Устройство и принцип работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

0 comments on “Устройство и принцип работы электродвигателя – Устройство и принцип работы электродвигателя

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *