Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)
Потому что нужно грамотно решить сразу две задачи:
- Ограничить прямой ток через светодиод, чтобы он не сгорел.
- Обеспечить защиту светодиода от пробоя обратным током.
Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.
В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.
Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:
Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.
Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:
R = (Uвх — ULED) / I
А мощность рассеивания резистора рассчитывается так:
P = (Uвх — ULED)2 / R
где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.
Пример расчета балластного резистора
Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:
R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)
P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)
Необходимое сопротивление резистора можно взять из таблицы ниже.
Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.
Сопротивление резистора, кОм | Амплитудное значение тока через светодиод, мА | Средний ток светодиода, мА | Средний ток резистора, мА | Мощность резистора, Вт |
---|---|---|---|---|
43 | 7.2 | 2.5 | 5 | 1.1 |
24 | 13 | 4.5 | 9 | 2 |
22 | 14 | 5 | 10 | 2.2 |
12 | 26 | 9 | 18 | 4 |
10 | 31 | 11 | 22 | 4.8 |
7.5 | 41 | 15 | 29 | 6.5 |
4.3 | 72 | 25 | 51 | 11.3 |
2.2 | 141 | 50 | 100 | 22 |
Другие варианты подключения
В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:
Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.
Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).
Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.
Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!
Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:
Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.
Как быть с пульсациями?
В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.
К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.
Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):
Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.
К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.
Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.
Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.
Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).
Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)
А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.
Какие пульсации считаются допустимыми?
Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.
Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.
Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.
На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).
В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).
Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:
Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,
где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.
Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.
Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:
Как уменьшить пульсации?
Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:
Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.
Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:
А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.
Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.
Расчет емкости сглаживающего конденсатора
Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.
Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:
Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%
Подставляем исходные данные и вычисляем Umin:
2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В
Период колебаний напряжения в сети равен 0.02 с (1/50).
Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:
Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):
tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (2⋅3.1415⋅50) = 0.0010108 с
Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:
tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с
Осталось вычислить емкость:
C = ILED ⋅ dt/dU = 0.02 ⋅ 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)
На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.
Повышаем КПД
Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?
Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).
Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.
Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:
Rc = 1 / 2πfC
то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.
Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)
Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:
Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.
Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.
К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.
Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.
Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.
Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.
Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:
И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.
А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.
Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.
Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:
Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.
Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.Расчет гасящего конденсатора для светодиода
Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):
C = I / (2πf√(U2вх — U2LED)) [Ф],
где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.
Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:
C ≈ 3183 ⋅ ILED / Uвх [мкФ]
а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:
C ≈ 15 ⋅ ILED [мкФ]
Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.
Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.
Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.
C1 | 15 nF | 68 nF | 100 nF | 150 nF | 330 nF | 680 nF | 1000 nF |
---|---|---|---|---|---|---|---|
ILED | 1 mA | 4.5 mA | 6.7 mA | 10 mA | 22 mA | 45 mA | 67 mA |
Немного о самих конденсаторах
В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:
Если вкратце, то:
- X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
- X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
- Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
- Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.
Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).
Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.
Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!
Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.
Как подключить светодиоды к 220 В используя простые схемы
Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.
Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Светодиод как работал «в прямом направлении» так и будет работать.
Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.
В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.
Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так — муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже.
к оглавлению ↑Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод — вариант 1
Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.
к оглавлению ↑Подключение LED по простой схеме с резистором и диодом — вариант 2
Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.
Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.
При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод HL1 (при этом прямое падение напряжения на светодиоде HL1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода HL1).
к оглавлению ↑Расчетная часть схемы
Номинальное напряжение сети:
UС.НОМ = 220 В
Принимается минимальное и максимальное напряжение сети (опытные данные):
UС.МИН = 170 В
UС.МАКС = 250 В
Принимается к установке светодиод HL1, имеющий максимально допустимый ток:
IHL1.ДОП = 20 мА
Максимальный расчетный амплитудный ток светодиода HL1:
IHL1.АМПЛ.МАКС = 0,7*IHL1.ДОП = 0,7*20 = 14 мА
Падение напряжения на светодиоде HL1 (опытные данные):
UHL1 = 2 В
Минимальное и максимальное действующее напряжение на резисторах R1, R2:
UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В
Расчетное эквивалентное сопротивление резисторов R1, R2:
RЭКВ.РАСЧ = UR.АМПЛ.МАКС/IHL1.АМПЛ.МАКС = 350/14 = 25 кОм
Максимальная суммарная мощность резисторов R1, R2:
PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт
Расчетная суммарная мощность резисторов R1, R2:
PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт
Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:
PR.ДОП = 2·2 = 4 Вт
Расчетное сопротивление каждого резистора:
RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм
Принимается ближайшее большее стандартное сопротивление каждого резистора:
R1 = R2 = 51 кОм
Эквивалентное сопротивление резисторов R1, R2:
RЭКВ = R1/2 = 51/2 = 26 кОм
Максимальная суммарная мощность резисторов R1, R2:
PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт
Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:
IHL1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
IHL1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА
Минимальный и максимальный средний ток светодиода HL1 и диода VD1:
IHL1.СР.МИН = IVD1.СР.МИН = IHL1.ДЕЙСТВ.МИН/КФ = 3,3/1,1 = 3,0 мА
IHL1.СР.МАКС = IVD1.СР.МАКС = IHL1.ДЕЙСТВ.МАКС/КФ = 4,8/1,1 = 4,4 мА
Обратное напряжение диода VD1:
UVD1.ОБР = UHL1.ПР = 2 В
Расчетные параметры диода VD1:
UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА
Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:
UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА
Минусы использования схемы подключения светодиодов к 220 В по варианту 2
Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. IHL1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.
к оглавлению ↑Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В
При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.
Расчет параметров схемы аналогичен второму варианту. Кому надо — посчитает и сравнит. Разница небольшая.
к оглавлению ↑Минусы подключения по 3 варианту
Если самые «пытливые умы» уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень — придется поверить на слово. Минус такого подключения — также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего IHL1.СР = (2,8-4,2) мА.
Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.
к оглавлению ↑Подключение светодиода на 220 В с использованием диодного моста — 4 вариант
Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.
В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.
UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА
Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:
UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА
Недостатки схемы подключения по 4 варианту
Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.
Однако при такой схеме мы получим заметное увеличение яркости светодиода: HL1: IHL1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА
В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.
к оглавлению ↑Как подключить светодиод к 220 В используя конденсатор
Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.
Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.
к оглавлению ↑Подключение светодиода к сети 220 В на примере выключателя с подсветкой
Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.
Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.
к оглавлению ↑Видео на тему подключения светодиода к сети 220 В
Ну и в конце всего длинного поста посмотрим видео на тему : «как подключить светодиоды к 220 В». Для тех, кому лень все читать было.
Подключение светодиода к сети 220в , схема и расчет
Сегодня к светодиодам значительно возрос интерес, ведь за ними будущее в освещении. Возникает вопрос как происходит подключение светодиода к сети 220 В, на который мы подробно ответим в этой статье. Также рассмотрим напряжение питания, распиновку, цоколевку, схемы подключения и различные расчеты.
Светодиодом называют полупроводниковый прибор, где электрический ток переходит в свет. Диод пропускает ток только в одном направлении. Светодиоды подключаются к 220В благодаря драйверу, который подходит по всем характеристикам.
Подключение по схеме может быть параллельным или последовательным. Светодиод характеризуется прочным корпусом, долгой и надежной работой.
Как устроен светодиод
Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.
- Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:
- катод;
- короче.
Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.
Как устроен светодиод? Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.
На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.
Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.
Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.
Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.
Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.
Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х — 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации.
По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета.Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.
Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару).
У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой подложке.
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться).
Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.
Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например, линзы. В результате получается белый свет.
Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы.
Третий способ — это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.
Напряжение питания светодиодов
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.
Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
- Теоретический метод
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.
Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.
В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.
Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
- Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.
В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.
Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Распиновка светодиода
Для решения вопроса существует всего 3 способа:
- Конструктивно
Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
- С помощью мультиметра
Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).
Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
Цоколевка светодиодов
Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.
Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.
Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.
Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.
Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:
Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.
Обозначение светодиодов на схеме
Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.
Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.
Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.
Не стоит путать обозначение светодиода на схеме с фотодиодом. С первого взгляда может показаться, что они одинаковые, однако, при детальном рассмотрении видна существенная разница: стрелки фоторезистора направлены на диод (треугольник с палочкой у острого конца).
Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.
В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.
Последовательное подключение светодиодов
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
- Недостатки последовательного подключения:
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное соединение светодиодов
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002). Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже.
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
- Недостатки параллельного подключения:
- Большое количество элементов.
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Схема лед драйвера на 220 вольт
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.
Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
- Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения.
Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Чтобы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки. В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора Диаграмма в схеме со стабилизаторомПоэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт.
Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания. Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой.
Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей. При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности. Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью.
Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Автор:Сергей Владимирович, инженер-электрик.
Подробнее об авторе.
Как подключить светодиод к 220В: резистор, конденсатор, способы подключения
Содержание статьи:
Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.
Технические особенности диода
По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.
Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.
Полюса светодиода
Полярность светодиода
Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).
Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:
- визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
- с помощью мультиметра в режиме «Проверка диодов»;
- посредством блока питания с постоянным выходным напряжением.
Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.
При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.
Способы подключения
Установка дополнительного резистора гасит излишки мощности электричества
Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.
Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.
Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.
Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
Встречно-параллельное подключение
Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.
Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.
Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.
Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.
С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.
Ограничение с помощью конденсатора
Использование накопительного конденсатора
Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:
- предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
- потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
- для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.
Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.
В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.
Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.
Нюансы подключения к сети 220 Вольт
Схема подключения светодиода к сети 220В
При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.
Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.
Значение сопротивления подбирается по методикам, описанным ранее.
Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.
Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.
Схема лед драйвера на 220 вольт
Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.
Вариант драйвера без стабилизатора тока
При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:
- при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
- в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
- при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.
При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.
Безопасность при подключении
Не следует устанавливать в цепь диодов полярные конденсаторы
При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:
- предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
- если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
- не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.
Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.
Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео
Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.
Основы подключения к 220 В
В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:
То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.
В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.
Способы подключения светодиода к сети 220 В
Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.
Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.
Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).
Рассмотрим схему подключения более подробно.
В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.
Такой вариант подключения наглядно показан в этом ролике:
Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.
Шунтирование светодиода обычным диодом.
Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.
Встречно-параллельное подключение двух светодиодов:
Схема подключения выглядит следующим образом:
Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.
Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.
Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.
Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.
В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.
Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.
Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.
Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.
Емкость конденсатора рассчитывается по эмпирической формуле:
где U – амплитудное напряжение сети (310 В),
I – ток, проходящий через светодиод (в миллиамперах),
Uд – падение напряжения на led в прямом направлении.
Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:
Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.
Нюансы подключения к сети 220 В
При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:
Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.
Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:
При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.
Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:
В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.
Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.
Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:
Здесь показано, почему нельзя:
- включать светодиод напрямую;
- последовательно соединять светодиоды, рассчитанные на разный ток;
- включать led без защиты от обратного напряжения.
Безопасность при подключении
При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.
В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.
Заключение
Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.
Подключение светодиода к сети 220 В
Сегодня будем рассматривать один из интереснейших вопросов — подключение светодиода к сети 220 В. В принципе, данная система достаточно проста и в этом нет ничего сложного.
Как правило, для подключения светодиодов используют драйверы. Но если Вам необходимо подключить только один светодиод, то использование таких драйверов просто-напросто нецелесообразно.
Т.к. светодиод — это полупроводниковый «прибор», то сопротивление полупроводника нелинейное, т.е., если смотреть более «кухарским» языком — нелинейно зависит от величины приложенного напряжения. Соответственно, для того, чтобы подключить светодиод к сети 220 В необходимо применять резистор.
При использовании постоянного напряжения можно применять только резистор. Если применять переменное напряжение, то можно использовать конденсатор и катушку индуктивности. Вдаваться в подробности полупериод и передачу-накопление энергии в полупериод не буду, т.к. это не та статья, где надо забивать голову этим.
Подключение светодиода к сети 220 В — простейшие схемы
В данном разделе будем рассматривать схемы, которые можно самостоятельно и быстро воплотить в жизнь, для того, чтобы выполнить подключение светодиода к сети 220 В самостоятельно.
Подключение светодиода к 220 В с использованием резистора — схема
Выше вы можете видеть схему, которая используется повсеместно в цепях индикации. Т.е. если Вы разберете выключатель со светодиодной подсветкой, то обязательно увидите именно такую схему подключения светодиодов к сети 220 В. Такое соединение к 220 В у светодиода не только в выключателях. но и в индикации чайника, утюга и т.п. электротехнических устройствах. Мало того, что это самая простая схема подключения светодиодов к сети 220 В, так она еще и самая надежная.
Схема — подключение светодиода к сети 220 В при помощи резистора и диода
Для защиты светодиода используют схему подключения встречно-параллельного обычного диода.
Для чего в этой схеме надо использовать диод? А все просто… В проводящий полупериод на светодиоде напряжение снижается до 3В. В момент когда он заперт (непроводящий полупериод) к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого может достигать аж 310 В. А это, само-собой влечет возможность вывода из строя светодиод. Но… Если мы создадим путь протекания тока в непроводимый полупериод времени, то амплитуда обратного напряжения будет снижена. Именно для этого и применяется шунтирующий диод, показанный на схеме. В общем, если Вы хотите, чтобы Ваш светодиод при подключении к сети 220 В с резистором не погорел синем пламенем, используйте диод.
Схема — подключение светодиода к сети 220 В с диодом подключенным не встречно-параллельно
Существует возможность подключать ограничительный диод и не встречно-параллельно.
По сравнению с предыдущей схемой мы можем видеть, что ток протекает через резистор в 2 раза меньше. А это означает, что на нем выделится мощности ровно в 4 раза меньше.
Отрицательная сторона такого подключения светодиода к 220 В
К защитному диоду прикладывается ПОЛНОЕ напряжение сети, поэтому абы какой диод мы тут установить не можем. Для этого нам необходимо подобрать диод с обратным напряжением не менее 440 В — 1N4007.
Развенчаю домыслы многих радиолюбителей… В отрицательные полупериоды светодиод будет находиться в состоянии электрического пробоя! Но благодаря тому, что сопротивление p-n перехода защитного диода велико, тока будет недостаточно, чтобы вывести его из строя.
Электробезопасность при подключении светодиода к сети 220 В
Не забываем, что любая простая схема подключения светодиода к 220 В при прикосновении к ней человека может привести к негативным последствиям. Поэтому, дабы обезопасить себя и возможно детей от высокого напряжения необходимо поделить номинал резистора по полам и определить его на обе «линии».
Данное видоизменение используйте не только к такому типу подключения светодиодов, но и на ВСЕ схемы, где вы будете подключать светодиоды к сети 220 В без специальных устройств в виде драйвера.
Схема — подключение светодиода к сети 220 В при помощи аналогичного светодиода
Если подходящего диода нет, то подойдет и светодиод, с аналогичными характеристиками, для подключения его встречно-параллельно.
После того, как соберете данную схему, будет казаться, что в момент подключения оба светодиода будут светиться. Однако, это ошибочное представление, т.к. они мерцают с частотой в 50 Гц.
Светодиоды работают в противофазе. Когда первый работает, второй гаснет.
Здесь Вам стоит отметить следующее:
- Ток протекает через оба полупериода
- Ток протекает через резистор
Соответственно и номинал резистора стоит снизить вдвое.
Подключение светодиода к сети 220 В с применением конденсатора
Конденсатор обладает реактивным сопротивлением переменному току. Если перевести на обывательский язык, то он не»ест» активную мощность, как это делает резистор, а соответственно и не нагревается. Постоянный ток не пропускается и является своеобразным сопротивлением, которое с легкостью приравнивается к разрыву цепи. Любые конденсаторы, которые вы будете использовать в своих схемах должны быть не менее 400 В.
Подключение светодиода с одним конденсатором
При подаче переменного напряжения на конденсатор через него будет течь ток. Сопротивление его будет обратно пропорционально зависеть от частоты. Т.е. с ростом частоты сопротивление будет падать. Сопротивление также зависит и от емкости.
Основной минус такой схемы в том, что в момент подключения к сети 220 В протекает большой ток. Величина которого может в несколько раз превышать номинальный ток светодиода, естественно из-за чего светоизлучающий диод может выйти из строя.
Подключение светодиода к сети 220 В с использованием конденсатора и резистора
Чем больше емкость конденсатора, тем выше значение тока в момент включения. Чтобы защитить светодиод следует использовать резистор, подключенный последовательно с конденсатором.
Если Вы будете рассчитывать номинал резистора, емкость конденсатора, то сможете понять, что данная схема просто нерентабельна из-за большой потери мощности.
Однако, мы тут рассматриваем различные возможности подключения светодиода к сети 220 В, а не их применение.
В общем, я попытался Вам показать все возможные варианты подключения светодиодов к сети 220 В. Может чего-то не хватает — пишите в комментариях, добавлю.
Как подключить светодиод к 220 В ⋆ diodov.net
У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.
Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.
Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.
Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.
Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.
Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.
Как подключить светодиод к 220 В с помощью резистора
Для большей наглядности изобразим расчетную схему.
Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.
С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.
Определим сопротивление R1, необходимое для первого светодиода:
Сетевое напряжение делим на два по уже указанной выше причине.
Мощность рассеивания резистор равна:
Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.
Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:
Мощность рассеивания равна:
Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.
Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.
Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.
Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.
Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.
В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.
Как подключить светодиод к 220 В с помощью конденсатора
Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.
Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:
Из приведенной формулы нам необходимо найти значение емкости:
Сопротивления Xс мы принимаем аналогично ранее найденным для резисторов: XС1 = R1 = 11000 Ом; XС2 = R2 = 306 Ом.
Подставляем данные значения и находим емкости:
Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В!!!
Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.
Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.
Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:
Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.
Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.
Еще статьи по данной теме
5 простых схем светодиодных драйверов мощностью 1 Вт
1) Малый 1 Вт светодиодный драйвер SMPS
В первом наиболее рекомендуемом проекте мы изучаем схему драйвера светодиодов SMPS, которую можно использовать для управления светодиодами высокой мощности с номинальной мощностью Светодиод мощностью 1 Вт до 12 Вт. Его можно подключать напрямую к любой домашней розетке переменного тока 220 В или 120 В переменного тока.
Введение
Первая конструкция объясняет конструкцию небольшого неизолированного понижающего преобразователя SMPS (неизолированная точка нагрузки), который является очень точной, безопасной и простой в сборке схемой.Узнаем подробности.
Основные характеристики
Предлагаемая схема драйвера светодиода smps чрезвычайно универсальна и особенно подходит для управления светодиодами высокой мощности.
Однако, будучи неизолированной топологией , не обеспечивает защиту от поражения электрическим током на стороне светодиода схемы.
Помимо вышеуказанного недостатка, схема безупречна и практически защищена от всех возможных опасностей, связанных с перенапряжением в сети.
Хотя неизолированная конфигурация может выглядеть несколько нежелательной, она избавляет конструктора от необходимости наматывать сложные первичные / вторичные секции на сердечниках E, поскольку трансформатор здесь заменен парой простых ферритовых дросселей барабанного типа.
Основным компонентом, отвечающим за выполнение всех функций, является микросхема VIPer22A от ST microelectronics, которая была специально разработана для таких небольших бестрансформаторных компактных драйверов светодиодов мощностью 1 Вт.
Принципиальная схема
Изображение предоставлено: © STMicroelectronics — Все права защищены
Работа схемы
Функционирование схемы этого светодиодного драйвера мощностью от 1 до 12 Вт можно понять, как показано ниже:
Входная сеть 220 В или 120 В переменного тока полуволна выпрямляется D1 и C1.
C1 вместе с катушкой индуктивности L0 и C2 составляют сеть круговых фильтров для подавления электромагнитных помех.
D1 желательно заменить двумя последовательно включенными диодами для выдерживания всплесков напряжения 2 кВ, генерируемых C1 и C2.
R10 обеспечивает определенный уровень защиты от перенапряжения и действует как предохранитель во время катастрофических ситуаций.
Как видно на приведенной выше принципиальной схеме, напряжение на C2 подается на внутренний сток МОП-транзистора IC на контактах 5–8.
Встроенный источник постоянного тока микросхемы VIPer подает ток 1 мА на вывод 4 микросхемы, который также является выводом Vdd микросхемы.
При напряжении около 14,5 В при напряжении Vdd источники тока выключаются и переводят схему ИС в колебательный режим или инициируют импульсную генерацию ИС.
Компоненты Dz, C4 и D8 становятся схемой регулирования цепи, где D8 заряжает C4 до пикового напряжения в период свободного вращения и когда D5 смещен в прямом направлении.
Во время вышеупомянутых действий источник или опорный сигнал ИС устанавливается примерно на 1 В под землей.
Для получения исчерпывающей информации о деталях схемы драйвера светодиода мощностью от 1 до 12 Вт, пожалуйста, просмотрите следующий технический паспорт в формате pdf от ST microelectronics.
DA TASHEET
2) Использование бестрансформаторного емкостного источника питания
Следующий 1-ваттный светодиодный драйвер, описанный ниже, показывает, как построить несколько простых схем 1-ваттного светодиодного драйвера мощностью 220 или 110 В, которые вам не будут стоить больше 1/2 доллара, не считая светодиода конечно.
Я уже обсуждал емкостный тип источника питания в паре столбов, например, в цепи освещения светодиодной трубки и в цепи бестрансформаторного источника питания, настоящая схема также использует ту же концепцию для управления предложенным светодиодом мощностью 1 Вт.
Работа схемы
На принципиальной схеме мы видим очень простую схему емкостного источника питания для управления светодиодом мощностью 1 Вт, что можно понять по следующим пунктам.
Конденсатор 1 мкФ / 400 В на входе образует сердце схемы и функционирует в качестве основного ограничителя тока схемы. Функция ограничения тока гарантирует, что напряжение, подаваемое на светодиод, никогда не превышает требуемый безопасный уровень.
Однако у высоковольтных конденсаторов есть одна серьезная проблема: они не ограничивают и не могут препятствовать первоначальному включению сетевого питания при резком ускорении, что может быть фатальным для любых электронных схем. Светодиоды не являются исключением.
Добавление резистора на 56 Ом на входе помогает принять некоторые меры по предотвращению повреждений, но все же оно само по себе не может обеспечить полную защиту задействованной электроники.
MOV, конечно, подойдет, а как насчет термистора? Да, термистор тоже был бы желанным предложением.
Но они относительно более дорогие, и мы обсуждаем дешевую версию предлагаемой конструкции, поэтому мы хотели бы исключить все, что пересекало бы отметку доллара в отношении общей стоимости.
Итак, я подумал об инновационном способе замены MOV обычной дешевой альтернативой.
Какова функция MOV
Это отводить начальный всплеск высокого напряжения / тока на землю так, чтобы он был заземлен до достижения светодиода в этом случае.
Не будет ли высоковольтный конденсатор выполнять ту же функцию, если он подключен к самому светодиоду. Да, он наверняка будет работать так же, как MOV.
На рисунке показана установка еще одного высоковольтного конденсатора непосредственно через светодиод, который поглощает мгновенный приток скачка напряжения при включении питания, он делает это во время зарядки и, таким образом, быстро опускает почти все начальное напряжение, вызывая все сомнения Связь с емкостным типом питания отчетливо понятна.
Конечным результатом, показанным на рисунке, является чистая, безопасная, простая и недорогая схема драйвера светодиода мощностью 1 Вт, которая может быть построена прямо дома любым любителем электроники и использоваться для личных удовольствий и полезности.
ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.
Принципиальная схема
ПРИМЕЧАНИЕ: Светодиод на приведенной выше схеме представляет собой светодиод 12 В 1 Вт , как показано ниже:
В показанной выше простой схеме драйвера светодиода мощностью 1 Вт два 4.Конденсаторы емкостью 7 мкФ / 250 вместе с резисторами на 10 Ом образуют в цепи своего рода «прерыватель скорости», этот подход помогает остановить первоначальный броск скачка включения, что, в свою очередь, помогает защитить светодиод от повреждения.
Эту функцию можно заменить NTC, которые популярны благодаря своим функциям подавления скачков напряжения.
Этот усовершенствованный способ решения проблемы начального броска скачка напряжения может заключаться в подключении термистора NTC последовательно с цепью или нагрузкой.
Пожалуйста, проверьте следующую ссылку, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.
Вышеуказанная схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.
Хороший способ решить проблему начального броска скачка напряжения — это подключить термистор NTC последовательно к цепи или нагрузке.
Перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.
https://homemade-circuits.com/2013/02/using-ntc-resistor-as-surge- suppressor.html
3) Стабилизированный драйвер светодиода мощностью 1 Вт с использованием емкостного источника питания
Как можно видеть, на выходе в их прямом смещенном режиме используется 6 шт.Поскольку каждый диод будет производить падение на 0,6 В на самом себе, 6 диодов будут создавать общее падение 3,6 В, что является как раз правильным значением напряжения для светодиода.
Это также означает, что диоды будут шунтировать остальную мощность от источника на землю, и, таким образом, поддерживать питание светодиода идеально стабилизированным и безопасным.
Еще одна схема стабилизированного емкостного драйвера мощностью 1 Вт
Следующая конструкция, управляемая полевым МОП-транзистором, вероятно, является лучшей универсальной схемой драйвера светодиода, которая гарантирует 100% защиту светодиода от всех типов опасных ситуаций, таких как внезапное перенапряжение и перегрузка по току или импульсный ток.
Светодиод мощностью 1 Вт, подключенный к указанной выше схеме, будет способен производить около 60 люменов силы света, что эквивалентно лампе накаливания мощностью 5 Вт.
Изображения прототипа
Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.
4) Схема драйвера светодиода мощностью 1 Вт с использованием аккумулятора 6 В
Как видно на четвертой диаграмме, в этой концепции практически не используется какая-либо схема или, скорее, она не включает в себя какой-либо высокотехнологичный активный компонент для требуемой реализации управления мощностью 1 Вт. СВЕТОДИОД.
Единственными активными устройствами, которые использовались в предлагаемой простейшей схеме драйвера светодиода мощностью 1 Вт, являются несколько диодов и механический переключатель.
Начальные 6 вольт от заряженной батареи понижаются до необходимого предела 3,5 вольт, удерживая все диоды последовательно или на пути напряжения питания светодиода.
Поскольку на каждый диод падает 0,6 вольт, все четыре вместе позволяют только 3,5 вольт достигать светодиода, обеспечивая его безопасное, но яркое освещение.
По мере того, как свечение светодиода падает, каждый диод впоследствии отключается с помощью переключателя, чтобы восстановить яркость светодиода.
Использование диодов для снижения уровня напряжения на светодиодах гарантирует, что процедура не рассеивает тепло и, следовательно, становится очень эффективной по сравнению с резистором, который в противном случае рассеивал бы много тепла в процессе.
5) Подсветка 1 Вт
.3 лучшие схемы светодиодных ламп, которые вы можете сделать дома
В сообщении подробно объясняется, как построить 3 простых светодиодных лампы, используя несколько светодиодов последовательно и запитывая их через цепь емкостного источника питания
ОБНОВЛЕНИЕ :
После выполнения Проведя много исследований в области дешевых светодиодных ламп, я наконец смог придумать универсальную дешевую, но надежную схему, которая обеспечивает безотказную безопасность светодиодной серии без использования дорогостоящей топологии SMPS. Вот окончательный вариант дизайна для всех вас:
Универсальный дизайн , разработанный SwagatamВам просто нужно отрегулировать потенциометр, чтобы установить выход в соответствии с общим прямым падением струны серии светодиодов.
Это означает, что если полное напряжение серии светодиодов составляет, скажем, 3,3 В x 50 шт. = 165 В, то отрегулируйте потенциометр, чтобы получить этот выходной уровень, а затем подключите его к цепочке светодиодов.
Это немедленно включит светодиоды на полную яркость и с полной защитой от перенапряжения и перегрузки по току или импульсных токов.
R2 можно рассчитать по формуле: 0,6 / Максимальный предел тока светодиода
Зачем нужны светодиоды
- Светодиоды широко используются сегодня для всего, что может включать освещение и освещение.
- Белые светодиоды стали особенно популярными благодаря своим миниатюрным размерам, впечатляющим возможностям освещения и высокой эффективности с точки зрения энергопотребления. В одном из своих предыдущих постов я обсуждал, как сделать супер простую схему светодиодной лампы, здесь концепция очень похожа, но продукт немного отличается своими характеристиками.
- Здесь мы обсуждаем создание простой светодиодной лампы. СХЕМА. Под словом «лампочка» мы подразумеваем форму блока, и его фитинги будут похожи на форму обычной лампы накаливания, но на самом деле весь корпус «лампочка» будет состоять из дискретных светодиодов, установленных рядами над цилиндрическим корпусом.
- Цилиндрический корпус обеспечивает правильное и равномерное распределение создаваемого освещения по всем 360 градусам, так что все помещение одинаково освещено. На изображении ниже показано, как установить светодиоды на предлагаемом корпусе.
Схема светодиодной лампы, описанная здесь, очень проста в сборке, а схема очень надежна и долговечна.
Интеллектуальная функция защиты от перенапряжения, включенная в схему, обеспечивает идеальное экранирование устройства от всех скачков напряжения при включенном электропитании.
Как работает схема
- На схеме показан один длинный ряд светодиодов, соединенных один за другим, чтобы сформировать длинную цепочку светодиодов.
- Чтобы быть точным, мы видим, что в основном было использовано 40 светодиодов, которые соединены последовательно. На самом деле, для входа 220 В вы, вероятно, могли бы включить около 90 светодиодов последовательно, а для входа 120 В будет достаточно около 45.
- Эти цифры получены путем деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода.
- Следовательно, 310 / 3,3 = 93 числа, а для входов 120 В рассчитывается как 150 / 3,3 = 45 чисел. Помните, что по мере того, как мы сокращаем количество светодиодов ниже этих цифр, риск выброса при включении увеличивается пропорционально, и наоборот.
- Схема источника питания, используемая для питания этого массива, получена из высоковольтного конденсатора, значение реактивного сопротивления которого оптимизировано для понижения входного высокого тока до более низкого тока, подходящего для схемы.
- Два резистора и конденсатор на плюсовом источнике питания расположены для подавления начального скачка мощности при включении и других колебаний во время колебаний напряжения.Фактически, реальная коррекция помпажа выполняется C2, введенным после моста (между R2 и R3).
- Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе цепи.
ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.
Принципиальная схема # 1
Список деталей
- R1 = 1M 1/4 Вт
- R2, R3 = 100 Ом 1 Вт,
- C1 = 474/400 В или 0.5 мкФ / 400 В PPC
- C2, C3 = 4,7 мкФ / 250 В
- D1 — D4 = 1N4007
- Все светодиоды = белый 5-миллиметровый вход типа соломенной шляпы = сеть 220/120 В …
Вышеупомянутый дизайн отсутствует подлинная функция защиты от перенапряжения и, следовательно, может быть серьезно подвержена повреждению в долгосрочной перспективе …. для защиты и гарантии конструкции от всех видов перенапряжения и переходных процессов
Светодиоды в описанной выше схеме светодиодной лампы также могут быть защищены и их срок службы увеличен за счет добавления стабилитрона к линиям питания, как показано на следующем рисунке.
Показанное значение стабилитрона составляет 310 В / 2 Вт и подходит, если светодиодная лампа включает от 93 до 96 В. Для другого меньшего количества светодиодных цепочек просто уменьшите значение стабилитрона в соответствии с расчетом общего прямого напряжения цепочки светодиодов.
Например, если используется цепочка из 50 светодиодов, умножьте 50 на прямое падение каждого светодиода, которое составляет 3,3 В, что дает 50 x 3,3 = 165 В, поэтому стабилитрон 170 В будет хорошо защищать светодиод от любого вида скачков напряжения или колебания …. и так далее
Видеоклип, показывающий схему цепи светодиода с использованием 108 светодиодов (две последовательные цепочки из 54 светодиодов, соединенные параллельно)
https: // youtu.be / xwjPZYyYdcY
Высоковаттная светодиодная лампа с использованием светодиодов мощностью 1 Вт и конденсатора
Простая высокомощная светодиодная лампа может быть построена с использованием 3 или 4 последовательно соединенных светодиодов мощностью 1 Вт, хотя светодиоды будут работать только с 30% -ной мощностью. освещенность будет поразительно высокой по сравнению с обычными светодиодами 20 мА / 5 мм, как показано ниже.
Более того, вам не потребуется радиатор для светодиодов, так как они работают только на 30% своей фактической мощности.
Аналогичным образом, объединив 90 шт. Светодиодов мощностью 1 Вт в вышеуказанной конструкции, вы можете получить яркую и высокоэффективную лампу мощностью 25 Вт.
Вы можете подумать, что получение 25 Вт от 90 светодиодов «неэффективно», но на самом деле это не так.
Потому что эти 90nos светодиодов мощностью 1 Вт будут работать при меньшем токе на 70% и, следовательно, при нулевом уровне нагрузки, что позволит им работать почти вечно.
Далее они могли бы комфортно работать без радиатора, так что вся конструкция могла быть сконфигурирована в очень компактный блок.
Отсутствие радиатора также означает минимум усилий и времени, затрачиваемых на строительство.Таким образом, все эти преимущества в конечном итоге делают этот светодиод мощностью 25 Вт более эффективным и экономичным по сравнению с традиционным подходом.
Принципиальная схема № 2
Регулирование напряжения с контролем перенапряжения
Если вам требуется улучшенная или подтвержденная система контроля перенапряжения и регулирования напряжения для светодиодной лампы, то с указанной выше 3-ваттной светодиодной конструкцией можно применить следующий шунтирующий стабилизатор:
Видеоклип:
В приведенных выше видеороликах я намеренно мигал светодиодами, подергивая провод питания, просто чтобы убедиться, что цепь на 100% защищена от перенапряжения.
Схема полупроводниковой светодиодной лампы с регулятором яркости с использованием ИС IRS2530D
Простая, но эффективная схема бестрансформаторного полупроводникового контроллера светодиода объясняется здесь с использованием единственной полной мостовой схемы драйвера IRS2530D.
Настоятельно рекомендуется: простой высоконадежный неизолированный светодиодный драйвер — не пропустите, полностью протестирован
Введение
Обычно схемы управления светодиодами основаны на принципах понижающего повышения или обратного хода, где схема сконфигурирован для создания постоянного постоянного тока для освещения серии светодиодов.
Вышеупомянутые системы управления светодиодами имеют свои недостатки и положительные стороны, в которых диапазон рабочего напряжения и количество светодиодов на выходе определяют эффективность схемы.
Другие факторы, например, включены ли светодиоды в параллельном или последовательном соединении, а также должны ли они быть затемнены или нет, также влияют на вышеуказанные типологии.
Эти соображения делают эти схемы управления светодиодами довольно рискованными и сложными. Схема, описанная здесь, использует другой подход и полагается на резонансный режим применения.
Хотя схема не обеспечивает прямой развязки от входного переменного тока, она позволяет управлять многими светодиодами с током до 750 мА. Процесс мягкого переключения, включенный в схему, обеспечивает большую эффективность устройства.
Как работает контроллер светодиодов
В основном бестрансформаторная схема управления светодиодами построена на основе ИС управления диммером люминесцентных ламп IRS2530D. На принципиальной схеме показано, как ИС была подключена и как ее выход был изменен для управления светодиодами вместо обычной люминесцентной лампы.
Обычный этап предварительного нагрева, необходимый для лампового освещения, использовал резонансный резервуар, который теперь эффективно заменен LC-схемой, подходящей для управления светодиодами. Так как ток на выходе является переменным током, необходимость в мостовом выпрямителе на выходе стала обязательной. ; это гарантирует, что ток непрерывно проходит через светодиоды во время каждого цикла переключения частоты.
Измерение переменного тока осуществляется резистором RCS, размещенным поперек общего провода и нижней части выпрямителя.Это обеспечивает мгновенное измерение переменного тока амплитуды выпрямленного тока светодиода. Вывод DIM ИС получает указанное выше измерение переменного тока через резистор RFB и конденсатор CFB.
Это позволяет контуру управления диммером ИС отслеживать амплитуду тока светодиода и регулировать ее, мгновенно изменяя частоту схемы переключения полумоста, так что напряжение на светодиодах поддерживает правильное среднеквадратичное значение.
Контур диммера также помогает поддерживать постоянный ток светодиода независимо от напряжения в сети, тока нагрузки и изменений температуры.Независимо от того, подключен ли один светодиод или группа последовательно, параметры светодиода всегда правильно поддерживаются IC.
В качестве альтернативы конфигурация может также использоваться в качестве сильноточной бестрансформаторной цепи питания.
Схема № 3
Оригинал артикула
.7 простых инверторных схем, которые вы можете построить дома
Эти 7 инверторных схем могут показаться простыми с их конструкцией, но способны обеспечить достаточно высокую выходную мощность и КПД около 75%. Узнайте, как собрать этот дешевый мини-инвертор и запитать небольшие приборы на 220 или 120 В, такие как сверлильные станки, светодиодные лампы, лампы CFL, фен, мобильные зарядные устройства и т. Д., От аккумулятора 12 В 7 Ач.
Что такое простой инвертор
Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором.Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.
Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.
1) Схема простого инвертора на транзисторах с перекрестной связью
В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать о процедуре построения базового инвертора, который может обеспечивать достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.
В Интернете и электронных журналах может быть огромное количество инверторных схем. Но эти схемы зачастую представляют собой очень сложные и высокотехнологичные инверторы.
Таким образом, у нас не остается выбора, кроме как задаваться вопросом, как построить силовые инверторы, которые могут быть не только простыми в сборке, но также дешевыми и высокоэффективными в работе.
Принципиальная схема инвертора от 12 В до 230 В
На этом поиск такой схемы заканчивается. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.
Порядок сборки
Для начала убедитесь, что для двух транзисторов 2N3055 установлены подходящие радиаторы. Его можно изготовить следующим образом:
- Вырежьте два листа алюминия по 6/4 дюйма каждый.
- Согните один конец листа, как показано на схеме. Просверлите отверстия подходящего размера на изгибах, чтобы его можно было надежно закрепить на металлическом шкафу.
- Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном магазине электроники, показанном ниже:
- Также просверлите отверстия для установки силовых транзисторов.Отверстия диаметром 3мм, типоразмер ТО-3.
- Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
- Подключите резисторы перекрестной связью непосредственно к выводам транзисторов в соответствии с принципиальной схемой.
- Теперь присоедините блок радиатора, транзистора и резистора ко вторичной обмотке трансформатора.
- Закрепите всю схему вместе с трансформатором внутри прочного, хорошо вентилируемого металлического корпуса.
- Смонтируйте выходные и входные гнезда, держатель предохранителя и т. Д. Снаружи шкафа и подсоедините их соответствующим образом к схемному узлу.
После завершения вышеуказанной установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.
Полная схема подключения
После того, как вышеуказанная проводка завершена, пора подключить ее к батарее 12 В 7 Ач с лампой 60 Вт, прикрепленной к вторичной обмотке трансформатора.При включении в результате будет мгновенное освещение груза с поразительной яркостью.
Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.
Я могу сказать это по своему опыту, я построил это устройство дважды, один раз, когда я учился в колледже, и второй раз недавно, в 2015 году. Хотя я был более опытным во время недавнего предприятия, я не мог получить потрясающую мощность Приобрел от своего предыдущего агрегата.Причина была проста: предыдущий трансформатор представлял собой надежный, изготовленный по индивидуальному заказу трансформатор на 5 ампер 9-0-9 В, по сравнению с новым, в котором я, вероятно, использовал ложно рассчитанный 5 ампер, что на самом деле было всего 3 ампер на его выходе.
Перечень деталей
Для конструкции вам потребуются всего несколько следующих компонентов:
- R1, R2 = 100 Ом / 10 Ватт намотки провода
- R3, R4 = 15 Ом / 10 Вт проволоки намотки
- T1, Т2 = 2Н3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (МОТОРОЛА).
- ТРАНСФОРМАТОР = 9-0-9 Вольт /8 Ампер или 5 ампер.
- АВТОМОБИЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ = 12 В / 10 Ач
- АЛЮМИНИЕВЫЙ РАДИАТОР = ОТРЕЗАТЬ ПО ТРЕБУЕМОМУ РАЗМЕРУ.
- ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ = СООТВЕТСТВУЕТ РАЗМЕРАМ ВСЕГО УЗЛА
Видео тестовое испытание
Как это проверить?
- Тестирование этого мини-инвертора выполняется следующим методом:
- Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
- Затем подключите полностью заряженный автомобильный аккумулятор на 12 В к его клеммам питания.
- Лампа мощностью 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает нормально.
- На этом конструирование и тестирование схемы инвертора завершается.
- Я надеюсь, что из приведенных выше обсуждений вы должны четко понять, как построить инвертор, который не только прост в сборке, но и очень доступен для каждого из вас.
- Его можно использовать для питания небольших электроприборов, таких как паяльник, лампы CFL, небольшие портативные вентиляторы и т. Д.Выходная мощность будет около 70 Вт и зависит от нагрузки.
- КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумуляторной батарее вашего автомобиля, когда вы находитесь на улице, так что проблема с переносом дополнительной батареи устранена.
Работа схемы
Функционирование этой схемы мини-инвертора довольно уникально и отличается от обычных инверторов, которые включают дискретный каскад генератора для питания транзисторов.
Однако здесь две секции или два плеча схемы работают в регенеративном режиме.Это очень просто и может быть понято по следующим пунктам:
Две половины схемы, независимо от того, насколько они согласованы, всегда будут иметь небольшой дисбаланс в параметрах, окружающих их, таких как резисторы, Hfe, витки обмотки трансформатора и т. Д.
Из-за этого обе половины не могут проводить вместе одновременно.
Предположим, что первыми проводят ток верхние полупроводниковые транзисторы, очевидно, они будут получать свое напряжение смещения через нижнюю половину обмотки трансформатора через R2.
Однако в тот момент, когда они насыщаются и проводят полную проводку, все напряжение батареи передается через их коллекторы на землю.
Отсасывает любое напряжение через R2 к их базе, и они немедленно прекращают проводить.
Это дает возможность нижним транзисторам проводить, и цикл повторяется.
Таким образом, вся цепь начинает колебаться.
Базовые эмиттерные резисторы используются для определения определенного порога разрыва их проводимости, они помогают установить базовый опорный уровень смещения.
Вышеупомянутая схема была вдохновлена следующим дизайном Motorola:
ОБНОВЛЕНИЕ: вы также можете попробовать это: Схема мини-инвертора 50 Вт
Форма выходного сигнала лучше, чем прямоугольная (разумно подходит для всех электронных устройств ))
Дизайн печатной платы для описанной выше простой схемы инвертора 2N3055 (компоновка со стороны трека)
2) Использование IC 4047
Как показано выше, простой, но полезный небольшой инвертор может быть построен с использованием только одной IC 4047.IC 4047 — это универсальный генератор с одиночной интегральной схемой, который обеспечивает точные периоды включения / выключения на своих выходных контактах №10 и №11. Частоту здесь можно определить, точно рассчитав резистор R1 и конденсатор C1. Эти компоненты определяют частоту колебаний на выходе ИС, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в зависимости от индивидуальных предпочтений.
Аккумулятор, МОП-транзистор и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.
Для расчета значений RC и выходной частоты, пожалуйста, обратитесь к таблице данных IC
Результаты тестирования видео
3) Использование IC 4049
IC 4049 Сведения о контактахВ этой простой схеме инвертора мы используем одну микросхему IC 4049, которая включает в себя 6 вентилей НЕ или 6 инверторов внутри. На диаграмме выше N1 —- N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Вентили НЕ N1 и N2 в основном используются для каскада генератора, C и R могут быть выбраны и зафиксированы для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны. инверторы, так что конечный результат дает чередующиеся импульсы переключения для силовых транзисторов.Конфигурация также гарантирует, что никакие вентили не останутся неиспользованными и простаивающими, что в противном случае может потребовать, чтобы их входы были терминированы отдельно по линии питания.
Трансформатор и аккумулятор можно выбрать в соответствии с требованиями к мощности или мощностью нагрузки.
На выходе будет чисто прямоугольная волна.
Формула для расчета частоты имеет следующий вид:
f = 1 /1.2RC,
, где R будет в Ом, а F в Фарадах
4) Использование IC 4093
Детали вывода IC 4093Очень похоже По сравнению с предыдущим преобразователем логического элемента НЕ, простой инвертор на основе логического элемента И-НЕ, показанный выше, может быть построен с использованием одной ИС 4093.Створки с N1 по N4 обозначают 4 затвора внутри IC 4093.
N1 подключен как схема генератора для генерации необходимых импульсов 50 или 60 Гц. Они соответствующим образом инвертируются и буферизируются с использованием оставшихся вентилей N2, N3, N4, чтобы, наконец, передать чередующуюся частоту переключения между базами силовых BJT, которые, в свою очередь, переключают силовой трансформатор с заданной скоростью для выработки необходимых 220 В или 120 В. Переменный ток на выходе.
Хотя здесь подойдет любая ИС логического элемента NAND, рекомендуется использовать IC 4093, поскольку в ней есть функция триггера Шмидта, которая обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на коммутационных выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.
5) Еще один простой инвертор с затвором NAND с использованием полевых МОП-транзисторов
В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которая может быть создана любым энтузиастом электроники и использоваться для питания большинства бытовых электроприборов (резистивных нагрузок и нагрузок SMPS) .
Использование пары МОП-транзисторов влияет на мощный отклик схемы, состоящей из очень небольшого количества компонентов, однако конфигурация прямоугольной волны действительно ограничивает использование устройства довольно большим количеством полезных приложений.
Введение
Расчет параметров полевого МОП-транзистора может показаться сложным, однако, следуя стандартному дизайну, реализовать эти замечательные устройства в действии определенно легко.
Когда мы говорим о схемах инвертора с выходами мощности, полевые МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.
Инверторные схемы являются фаворитами этих устройств, поэтому мы будем обсуждать одну такую конструкцию, включающую полевые МОП-транзисторы для питания выходного каскада схемы.
На схеме мы видим очень простую конструкцию инвертора, включающую каскад прямоугольного генератора, буферный каскад и выходной каскад мощности.
Использование одной ИС для генерации требуемых прямоугольных волн и для буферизации импульсов, в частности, упрощает разработку конструкции, особенно для начинающих энтузиастов электроники.
Использование IC 4093 вентилей И-НЕ для схемы генератора
IC 4093 — это ИС триггера Шмидта с четырьмя вентилями И-НЕ, одиночный И-НЕ подключен как нестабильный мультивибратор для генерации базовых прямоугольных импульсов.Номинал резистора или конденсатора может быть отрегулирован для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц, а для версий на 120 В. — 60 Гц.
Выход из вышеупомянутого каскада генератора связан с парой дополнительных логических элементов И-НЕ, используемых в качестве буферов, выходы которых в конечном итоге завершаются затвором соответствующих полевых МОП-транзисторов.
Два логических элемента И-НЕ соединены последовательно, так что два полевых МОП-транзистора получают поочередно противоположные логические уровни от каскада генератора и попеременно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.
Переключение полевых транзисторов
Вышеупомянутое переключение полевых МОП-транзисторов направляет весь ток батареи в соответствующие обмотки трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, где в конечном итоге выводится выход на нагрузку.
МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.
Это просто вопрос модификации трансформатора и батареи для создания инверторов различных диапазонов с разной выходной мощностью.
Список деталей для объясненной выше принципиальной схемы инвертора на 150 Вт:
- R1 = 220K pot, необходимо установить для получения желаемой выходной частоты.
- R2, R3, R4, R5 = 1K,
- T1, T2 = IRF540
- N1 — N4 = IC 4093
- C1 = 0,01 мкФ,
- C3 = 0,1 мкФ
TR1 = входная обмотка 0-12 В , ток = 15 А, выходное напряжение в соответствии с требуемыми спецификациями
Формула для расчета частоты будет идентична описанной выше для IC 4049.
f = 1 / 1.2RC. где R = R1 установленное значение, а C = C1
6) Использование IC 4060
Если у вас есть одна микросхема 4060 IC в вашем электронном мусорном ящике, а также трансформатор и несколько силовых транзисторов, вы, вероятно, готовы к созданию ваша простая схема инвертора мощности, использующая эти компоненты. Базовая конструкция предлагаемой схемы инвертора на основе IC 4060 может быть представлена на диаграмме выше. Концепция в основном та же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания поочередно переключающихся импульсов через транзисторный каскад инвертора BC547.
Так же, как IC 4047, IC 4060 требует внешних RC-компонентов для настройки своей выходной частоты, однако выход IC 4060 ограничен 10 отдельными выводами в определенном порядке, при этом выходная частота генерирует частоту со скоростью, вдвое превышающей его предыдущей распиновки.
Несмотря на то, что вы можете найти 10 отдельных выходов с удвоенной частотой по выводам IC, мы выбрали вывод №7, поскольку он обеспечивает самую быструю частоту среди остальных и, следовательно, может выполнить это, используя стандартные компоненты для RC. сеть, которая может быть легко доступна вам независимо от того, в какой части земного шара вы находитесь.
Для расчета значений RC для R2 + P1 и C1 и частоты вы можете использовать формулу, как описано ниже:
Или другой способ — с помощью следующей формулы:
f (osc) = 1 / 2.3 x Rt x Ct
Rt в омах, Ct в фарадах
Более подробную информацию можно получить из этой статьи
Вот еще одна крутая идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для реализации конструкции инвертора высокой мощности, и может быть повышен до любого желаемого уровня мощности.
Давайте узнаем больше об этой простой конструкции
7) Простейший инвертор на 100 Вт для новичков
Схема простого инвертора на 100 Вт, описанная в этой статье, может считаться наиболее эффективным, надежным, простым в сборке и мощным инвертором дизайн. Он эффективно преобразует любые 12 В в 220 В с использованием минимального количества компонентов.
Введение
Идея была опубликована много лет назад в одном из электронных журналов Elecktor. Я представляю ее здесь, чтобы вы все могли создать и использовать эту схему для своих личных приложений.Узнаем больше.
Предлагаемая простая схема инвертора на 100 ватт была опубликована довольно давно в одном из электронных журналов elektor, и, на мой взгляд, эта схема — одна из лучших схем инвертора, которую вы можете получить.
Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо рассчитана, использует обычные детали, и если все будет сделано правильно, то сразу заработает.
Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простой формат и низкую стоимость.
Использование нестабильного транзистора в качестве генератора 50 Гц
В основном вся конструкция построена вокруг каскада нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и некоторых резисторов.
Этот каскад отвечает за генерацию основных импульсов 50 Гц, необходимых для запуска работы инвертора.
Вышеупомянутые сигналы относятся к низким текущим уровням и, следовательно, требуют повышения до более высоких уровней.Это делается с помощью транзисторов драйвера BD680, которые по своей природе являются дарлингтонскими.
Эти транзисторы принимают сигналы малой мощности с частотой 50 Гц от транзисторных каскадов BC547 и поднимают их при более высоких уровнях тока, чтобы их можно было подать на выходные транзисторы.
Выходные транзисторы представляют собой пару 2N3055, которые получают усиленный ток в своих базах от вышеупомянутого каскада драйвера.
2N3055 Транзисторы как силовой каскад
Транзисторы 2N3055, таким образом, также работают с высоким уровнем насыщения и высоким током, который попеременно накачивается в соответствующие обмотки трансформатора и преобразуется в требуемые напряжения переменного тока 220 В на вторичной обмотке трансформатора.
Список деталей для описанной выше простой схемы инвертора на 100 Вт
- R1, R2 = 27K, 1/4 Вт 5%
- R3, R4, R5, R6 = 330 Ом, 1/4 Вт 5%
- R7 , R8 = 22 ОМ, ТИП НАВИВКИ ПРОВОДА 5 Вт
- C1, C2 = 470nF
- T1, T2 = BC547,
- T3, T4 = BD680, ИЛИ TIP127
- T5, T6 = 2N3055,
- D1, D2 = 1N5402
- ТРАНСФОРМАТОР = 9-0-9 В, 5 ампер
- БАТАРЕЯ = 12 В, 26 Ач,
Радиатор для T3 / T4 и T5 / T6
Технические характеристики:
- Выходная мощность: 100 Вт, если На каждом канале используются одиночные транзисторы 2n3055.
- Частота: 50 Гц, прямоугольная волна,
- Входное напряжение: 12 В при 5 А для 100 Вт,
- Выходное напряжение: 220 В или 120 В (с некоторыми настройками)
Из приведенного выше обсуждения вы можете почувствовать себя полностью осведомленным относительно как построить эти 7 простых инверторных схем, сконфигурировав данную базовую схему генератора с BJT-каскадом и трансформатором, и включив очень обычные детали, которые могут уже существовать у вас или доступны при утилизации старой собранной печатной платы.
Как рассчитать резисторы и конденсаторы для частот 50 или 60 Гц
В этой транзисторной схеме инвертора конструкция генератора построена с использованием транзисторной нестабильной схемы.
В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют частоту выхода. Хотя они правильно рассчитаны для получения частоты приблизительно 50 Гц, если вы дополнительно хотите настроить выходную частоту в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого калькулятора нестабильного мультивибратора .
Универсальный двухтактный модуль
Если вы заинтересованы в достижении более компактной и эффективной конструкции с использованием простой двухпроводной двухтактной конфигурации трансформатора, вы можете попробовать следующую пару концепций
В первом из них используется IC 4047 вместе с парой полевых МОП-транзисторов с каналом p и n:
. Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующую универсальную конструкцию.
Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.
Кроме того, он также имеет встроенное зарядное устройство с автоматическим переключением.
Преимущества простого двухтактного инвертора
Основными преимуществами этой универсальной конструкции двухтактного инвертора являются:
- В нем используется 2-проводной трансформатор, что делает конструкцию очень эффективной с точки зрения размера и выходной мощности.
- Он включает в себя переключение с зарядным устройством, которое заряжает батарею при наличии сети, а во время сбоя сети переключается в инверторный режим, используя ту же батарею для выработки намеченных 220 В от батареи.
- Он использует обычные p-канальные и N-канальные MOSFET без каких-либо сложных схем.
- Он дешевле в сборке и более эффективен, чем аналог центрального смесителя.
Для продвинутых пользователей
Выше было объяснено несколько простых схем инвертора, однако, если вы думаете, что они довольно обычные для вас, вы всегда можете изучить более продвинутые дизайны, которые включены в этот сайт.Вот еще несколько ссылок для справки:
Другие проекты инверторов для вас с полной онлайн-справкой!
О компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
Объяснение 4 простых схем бестрансформаторного источника питания
В этом посте мы обсудим 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного сетевого напряжения переменного тока. Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .
Концепция бестрансформаторного источника питания
Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или катушки индуктивности.
Он работает за счет использования высоковольтного конденсатора для снижения сетевого переменного тока до необходимого более низкого уровня, который может подходить для подключенной электронной схемы или нагрузки.
Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение действующего напряжения было намного выше, чем пиковое значение напряжения сети переменного тока, чтобы гарантировать безопасную работу конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:
Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.
Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и не позволяет сетевому переменному току превысить заданный уровень, как определено номиналом конденсатора.
Однако, хотя ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.
Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна выбираться соответствующим образом в соответствии с допустимым уровнем тока конденсатора.
ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения
Преимущества использования схемы бестрансформаторного источника питания
Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.
Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.
Однако одним из недостатков использования трансформатора является то, что вы не можете сделать его компактным.
Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.
Описанная здесь бестрансформаторная схема питания очень эффективно заменяет обычный трансформатор в приложениях, где требуется ток ниже 100 мА.
Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения напряжения сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.
Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться как источник питания постоянного тока 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеупомянутой конструкции, стоит обратить внимание на несколько серьезных недостатков, которые может включать эта концепция.
Недостатки схемы бестрансформаторного источника питания
Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.
Еще один недостаток, который, безусловно, требует внимания, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, в которых все находится в непроводящем корпусе.
Поэтому начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может вызвать серьезное повреждение цепи с питанием и самой цепи питания.
Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.
Этот конденсатор заземляет мгновенные скачки высокого напряжения, таким образом эффективно защищая связанную с ним электронику.
Как работает схема
Работу этого источника питания без преобразования можно понять по следующим пунктам:
- Когда вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1. Здесь можно приблизительно принять значение около 50 мА.
- Тем не менее, напряжение не ограничено, и поэтому все 220 В или что-либо еще на входе может достигать следующей ступени мостового выпрямителя.
- Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
- Этот постоянный ток 310 В мгновенно понижается до постоянного низкого уровня с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
- C2 наконец фильтрует 12 В постоянного тока с пульсациями в относительно чистый 12 В постоянного тока.
1) Базовая бестрансформаторная конструкция
Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:
- Конденсатор C1 становится наиболее важной частью схемы, так как он который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать ток около 50 мА на выходную нагрузку.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратиться к этой статье.
- Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 может сохранять в себе сетевой потенциал 220 В, когда он отсоединен от сети, и может подвергнуться риску поражения высоким напряжением у любого, кто коснется контактов вилки. R1 быстро разряжает C1, предотвращая любую подобную аварию.
- Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока от конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
- Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле.Следовательно, стабилитрон соответствующего номинала используется для переключения 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
- Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока войти в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом могло бы быть использование NTC вместо R2.
- C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.
Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я добавил место для MOV также на печатной плате со стороны входа сети.
Пример схемы для светодиодного декоративного освещения.
Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как небольшие светодиодные лампы или светодиодные гирлянды.
Идею запросил г-н.Jayesh:
Требования к требованиям
Струна состоит из примерно 65-68 светодиодов на 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампочки составляет 4 дюйма в последней веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полный канат, состоящий из 6 струн.
у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому размещение лампы получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полная веревка из 3-х струн вместе.
Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные устройства необходимо подключить для защиты схем.
и, пожалуйста, обратите внимание, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.
Конструкция схемы
Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В 5 мм светодиоды:
Здесь вход конденсатор 0,33 мкФ / 400 В определяет количество тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.
Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.
Следовательно, для двух параллельно включенных последовательностей требуемое значение будет 0,68 мкФ / 400 В, для трех строк вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.
Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности.Его можно было вставить где угодно последовательно с отдельными струнами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ переменного тока, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC …….. 2). к бестрансформаторному источнику питания со стабилизированным напряжением
Теперь давайте посмотрим, как обычный емкостной источник питания может быть преобразован в бестрансформаторный источник питания со стабилизированным напряжением или переменным напряжением, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти.
Технические характеристики
Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге.
Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт и 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, поэтому мне нужен двойной источник питания.
Примерная спецификация:
Номинальный ток 300 мАР1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода)
Я решил использовать вашу вторую цепь, как упоминалось https://homemade-circuits.com/2012/08/ high-current-transformerless-power.html
Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V
Буду рад, если Вы любезно поможете.
Спасибо,
Конструкция
Функционирование различных компонентов, используемых на различных этапах показанной выше схемы управления напряжением, можно понять из следующих точек:
Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В.
Выходное напряжение 10 мкФ / 400 В теперь достигает примерно 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети.
Сеть делителей напряжения, сконфигурированная на основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания.
Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности.
Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого на эмиттере / земле TIP122.
Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы поддерживать ее в выключенном состоянии и защищать от первоначального скачка напряжения.
Катушка индуктивности дополнительно гарантирует, что в течение периода включения катушка обеспечивает высокое сопротивление и предотвращает попадание любого пускового тока внутрь цепи, предотвращая возможное повреждение цепи.
Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC.
Принципиальная схема
Использование полевого МОП-транзистора
Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно улучшена за счет применения источника питания истокового повторителя полевого МОП-транзистора вместе с дополнительным каскадом регулирования тока с использованием транзистора BC547.
Полную принципиальную схему можно увидеть ниже:
Видео доказательство защиты от перенапряжения
3) Схема бестрансформаторного источника питания с нулевым переходом
Третий интерес объясняет важность обнаружения пересечения нуля в емкостных бестрансформаторных источниках питания для полной защиты от бросков импульсных токов при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом.
Технические характеристики
Я с большим интересом читал статьи о безтрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема заключается в возможном пусковом токе в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль).
Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через нуль, почему бы не использовать компонент перехода через ноль для управления им, например, оптотриак с переходом через ноль.
Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться симистором, который включается при переходе через нуль.
Если это применимо, это также решит проблемы с высокими требованиями к току, так как Optotriac, в свою очередь, может без каких-либо затруднений управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током.
Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту.
С уважением,
Francis
Конструкция
Как справедливо указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания.
Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств.
О оптопарах MOCxxxx
Драйверы симисторов серии MOC имеют форму оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль.
Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения для контроля перенапряжения в емкостных источниках питания.
Обнаружение и выполнение перехода через ноль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним для наблюдения за предполагаемым управляемым срабатыванием при переходе через нуль интегральной схемы симистора.
Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через ноль, давайте сначала вкратце разберемся, что такое переход через нуль, и связанные с ним особенности.
Что такое переход через нуль в сети переменного тока
Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые нарастают и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале.Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое значение +310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл.
Когда сетевое напряжение приближается к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки.
Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, потому что конденсаторы имеют характеристики короткого замыкания в течение доли секунды при воздействии напряжения питания, после чего они заряжаются и настраиваются до заданного значения. выходной уровень
Возвращаясь к проблеме пересечения нуля в сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения.
Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выход источника питания будет безопасным и не будет иметь импульсного тока.
Как это работает
Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что при каждом включении питания он срабатывает и инициирует подключенный симистор только во время первого перехода через ноль фазы переменного тока, а затем поддерживает нормально включенным переменный ток до тех пор, пока питание не будет отключено и снова не включено.
Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур.
Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника питания через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, что может светодиод.
Как контролируется импульсный ток
При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети.
Напряжение питания, полученное на выходе конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света … и как только обнаруживается, что цикл питания переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшуюся часть периода, пока блок не будет выключен и снова включен.
При вышеуказанной настройке при каждом включении питания оптоизолирующий симистор MOC гарантирует, что симистор запускается только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку безопасный и свободный от опасного всплеска спешки.
Улучшение вышеупомянутой конструкции
Здесь обсуждается комплексная схема емкостного источника питания с детектором перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена г-ном Чами.
Разработка улучшенной схемы емкостного источника питания с Обнаружение пересечения нуля
Привет, Свагатам.
Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения.
(я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)
1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока.
2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381.
3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и это моя ошибка
, я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
работать будет?
4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, резистор 10 кОм должен быть меньше?
Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно).
Спасибо, что нашли время и просмотрели мою полную неисправностей схему.
Хорошего дня.
Chamy
Оценка конструкции
Здравствуйте, Chamy,
мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы:
1) да BT136 следует заменить на симистор с более высоким номиналом.
2) TIP31 следует заменить транзистором Дарлингтона, например, TIP142 и т. Д., Иначе он может работать неправильно.
3) при использовании Дарлингтона базовый резистор может иметь высокое значение, может быть, резистор 1 кОм / 2 Вт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишеством, гораздо более простую версию можно увидеть ниже https://homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С уважением
Swagatam
Ссылка:
Схема перехода через ноль
4) Импульсный бестрансформаторный источник питания с использованием IC 555
концепция схемы переключения при переходе через нуль, в которой входная мощность от сети может поступать в схему только во время перехода через нуль сигнала переменного тока, что исключает возможность скачков напряжения.Идею предложил один из заядлых читателей этого блога.
Технические характеристики
Сработает ли бестрансформаторная схема с нулевым переходом для предотвращения начального пускового тока, не позволяя включаться до точки 0 в цикле 60/50 Гц?
Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность.
Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ???
Как считывать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять.
Вышеупомянутый запрос побудил меня искать соответствующую конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения.
Что такое коммутация с нулевым переходом:
Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без импульсных помех.
Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала.
После этого положительного цикла осциллограмма опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке.
Вышеупомянутая операция происходит примерно от 50 до 60 раз в секунду в зависимости от технических характеристик электросети.
Поскольку именно эта форма сигнала входит в цепь, любая точка формы сигнала, отличная от нуля, представляет потенциальную опасность выброса при включении из-за высокого тока в форме сигнала.
Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после которого экспоненциальный рост не представляет никакой угрозы для нагрузки.
Именно это мы и попытались реализовать в предлагаемой схеме.
Работа схемы
Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсацию на линии 100 Гц.
Вышеупомянутая частота 100 Гц снижается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. На этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1.
Вышеупомянутый потенциал также подается на базу Q1 через резистор 100 кОм.
IC 555 сконфигурирован как моностабильный MV, что означает, что его выход будет повышаться каждый раз, когда его контакт №2 заземлен.
В течение периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0.6 В, Q1 включает заземляющий контакт №2 микросхемы и обеспечивает положительный выход вывода №3 микросхемы.
Выход IC включает тиристор и нагрузку и удерживает его включенным до истечения времени MMV, чтобы начать новый цикл.
Время включения моностабильного может быть установлено изменением предустановки 1M.
Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот.
Условия включения этой схемы бестрансформаторного питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или схемы.
Принципиальная схема
Для приложения драйвера светодиода
Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиодов на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь.
О компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!