Условное обозначение блока питания на схеме: Условные графические и буквенные обозначения электрорадиоэлементов

Обозначение деталей: блока питания, звонка на электрической схеме

Проблема чтения электрических схем осложняется следующими факторами:

  • Чем сложнее устроен прибор или узел, тем труднее разобраться в связях между его элементами и понять принцип их работы. Нужно уметь не только правильно читать схемы, но и создавать их. И если вы получаете в руки «чужую» схему, иногда остаётся только гадать о том, чего хотел добиться автор и почему он так сделал.
  • Несмотря на наличие стандартов для обозначения тех или иных элементов/блоков, не все их придерживаются. Здесь сложность даже не в том, что разработчики не знают как этот делать, а скорее в наборе ПО, в котором ведётся проектирование. Стандарты и обозначения в разных странах могут не совпадать, а разработчики софта придерживаются родных норм.

 

Стандарты

Чтобы свести ошибки в понимании к минимуму, следует придерживаться чётких стандартов и правил. В России, как и в любой другой стране, существуют руководящие документы. Речь идёт о ГОСТах, таких как:

  • 2.710 81 г. – о буквенных обозначениях;
  • 21.614 88 г. – об условных обозначениях общего назначения;
  • 21.404 85 г. – здесь прописаны обозначения элементов автоматизации;
  • И т.д.

Несмотря на внушительные даты создания документов, они более чем актуальны.

 

Наиболее востребованные обозначения

Чтобы понять работу схемы, нужно знать условный знак элемента и принцип его работы.

К общим, и потому самым популярным, можно отнести следующие:

Рис. 1. Условные обозначения элементов на схемах

 

Они встречаются во многих схемах. Элементы здесь достаточно простые и понятные.

Но к более сложным деталям – иной подход. По обозначению можно понять не только общее назначение узла, но и дополнительные нюансы.

Например, конденсаторы.

Рис. 2. Условные обозначения конденсаторов на схемах

 

Или сопротивления.

Таблица 1. Условные обозначения сопротивлений на схемах

И это уже не говоря о переменных (подстроечных) вариантах.

Так могут выглядеть транзисторы.

Рис. 3. Условные обозначения транзисторов на схемах

 

А так диоды и другие ограничительные элементы.

Рис. 4. Условные обозначения диодов и других ограничительных элементов на схемах

 

В блоках питания

Теперь непосредственно об обозначениях, которые можно встретить на схемах БП.

В основе любого вторичного источника тока должен лежать или преобразователь (трансформатор) или ограничитель (диоды и аналогичные элементы).

Трансформаторы обозначаются на схемах так.

Рис. 5. Условные обозначения трансформаторов на схемах

 

Или так.

Таблица 2. Варианты обозначения трансформаторов на схемах

 

Количество выводов будет соответствовать имеющимся обмоткам. Здесь очень важный момент – разницы между импульсными и силовыми трансформаторами на схеме вы не увидите. А ещё более частая проблема – отсутствие буквенных обозначений моделей или каких-либо параметров.

Это связано с тем, что в большинстве случаев требуется либо подбор детали под заданные требования, или подразумевается расчёт и намотка его своими силами. Максимум, что будет обозначено на схеме – входное и выходное напряжение.

Обозначение диодов мы привели выше. Но иногда вместо отдельных диодов можно встретить готовые сборки – мосты. Они будут выглядеть так:

Рис. 6. Обозначения мостов на схемах

 

Для удобства понимания, слева – схема из простейших элементов.

Если блок питания работает на импульсном трансформаторе, ему понадобится генератор импульсов, его часто выполняют на базе интегральных микросхем. Их на схеме ни с чем не перепутаешь.

Рис. 7. Обозначения интегральных микросхем

 

Это общее обозначение. Если элемент реализует элементарную логику или другие простые функции, они могут быть обозначены непосредственно на выводах или на специальных блоках внутри.

Например, так.

Рис. 8. Обозначения интегральных микросхем

Или так.

Рис. 9. Обозначения интегральных микросхем

 

Измерительные приборы на схемах обозначаются так.

Рис. 10. Обозначения измерительных приборов на схемах

 

Но иногда можно встретить и более сложные элементы – цифровые индикаторы. Один из вариантов их обозначения.

Рис. 11. Обозначение цифровых индикаторов на схемах

 

Таким образом, схема простого блока питания может выглядеть таким образом.

Рис. 12. Схема простого блока питания

 

Автор: RadioRadar

Блоки питания и устройства коммутации

БП30А компактный блок питания для шкафов автоматики

БП14-Д4

3D Модель БП14Б-Д4.2
2D Модель БП14Б-Д4.2
3D Модель БП14Б-Д4.4
2D Модель БП14Б-Д4.4

БП15Б-Д2

УГО_ЕСКД
УГО_СПДС
Бесконтактный датчик и световая
Датчик уровня 4…20мА и индикатор токовой
Попловковый датчик уровня и световая сигнализация
Термопара и индикатор токовой петли
Термосопротивление и индикатор токовой петли
Подключение различных датчиков и устройств
Параллельное включение двух блоков питания
3D Модель БП15
2D Модель БП15

БП30Б-Д3

3D Модель БП30Б-Д3
2D Модель БП30Б-Д3

БП60Б-Д4

Бесконтактный датчик и световая
Датчик уровня 4…20мА и индикатор токовой
Попловковый датчик уровня и световая сигнализация
Термопара и индикатор токовой петли
Термосопротивление и индикатор токовой петли
Подключение различных датчиков и устройств
Параллельное включение двух блоков питания
3D Модель БП60Б-Д4
2D Модель БП60Б-Д4

БП60Б-Д4-24С

3D Модель БП60Б-Д4-24С
2D Модель БП60Б-Д4-24С

БП120Б-Д9-24С

3D Модель БП120Б-Д9-24С
2D Модель БП120Б-Д9-24С

БП60К блок питания для ПЛК и ответственных применений

УГО_ЕСКД
УГО_СПДС
Бесконтактный датчик и световая сигнализация
Датчик уровня 4…20мА и индикатор токовой
Термопара и индикатор токовой петли
Термосопротивление и индикатор токовой петли
Подключение различных датчиков и устройств
Параллельное включение двух блоков питания
Последовательное включение двух блоков питания
3D модель БП60К-24
2D модель БП60К-24

ИБП60Б блок питания с резервированием

УГО_ЕСКД
УГО_СПДС
Бесконтактный датчик и световая сигнализация
Поплавковый датчик уровня и световая сигнализация
Термопара и индикатор токовой петли
Внешний источник питания
Собственный источник питания
3D Модель ИБП60Б-Д9-24
2D Модель ИБП60Б-Д9-24

БКСТ1 блок коммутации силовых симисторов и тиристоров

УГО_ЕСКД
УГО_СПДС
Подключение к ТРМ1(К)
Подключение к ТРМ1(P)
Подключение к ТРМ1(T)
Замкнутый треугольник симисторы
Звезда с нейтралью симисторы
Звезда с нейтралью тиристоры
Разомкнутый треугольник симисторы
Разомкнутый треугольник тиристоры
3D Модель БКСТ1
2D Модель БКСТ1

УЗОТЭ-2У прибор для защиты электродвигателя с контролем тока

УГО_ЕСКД
УГО_СПДС
Подключение датчиков
Подключение двигателя (защита)
Подключение прибора в сеть
Подключение электродвигателя
3D Модель УЗОТЭ-2У
2D Модель УЗОТЭ-2У

БСФ блок сетевого фильтра

УГО_ЕСКД
УГО_СПДС
Подключение различных приборов
3D Модель БСФ
2D Модель БСФ

ИСКРА пассивный барьер искрозащиты Ex ia Ga IIC

УГО_ЕСКД
УГО_СПДС
ИСКРА-АТ.03
ИСКРА-ТП.03
ИСКРА-ТС.03
3D Модель
2D Модель

Обозначения На Принципиальных Схемах — tokzamer.ru

Допускается в отдельных случаях, установленных стандартами, все сведения об элементах помещать около УГО. Вся информация представлена блоками с подписями — наименованиями устройств.


I — Ответвления.

Все это также можно отобразить схематически. УГО в однолинейных и полных электросхемах Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них.
Читаем принципиальные электрические схемы

Буквенные обозначения Наряду с УГО для более точного определения названия и назначения элементов, на схемы наносят буквенное обозначение. Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты.

H — Соединение в месте пересечения. Графическое изображение соединений.

Обозначение линий связи на принципиальных схемах ГОСТ 2.

Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании: Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Если на схеме в позиционное обозначение элемента включено позиционное обозначение устройства или обозначение функциональной группы, то в перечне элементов в графе «Поз.

Как читать электрические схемы

Графические обозначения в электрических схемах

Можно сказать, в этом месте проводки спаиваются: Если пристально вглядеться в схему, то можно заметить пересечение двух проводников Такое пересечение будет часто мелькать в схемах. Размеры в ЕСКД Размеры графических и буквенных изображений на чертеже, толщина линий не должны отличаться, но допустимо их пропорционально изменять в чертеже. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта.


Это касается и каждого отдельного элемента Ток питания в принципиальных схемах должен течь сверху — вниз!

Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании: Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Пример однолинейной схемы Монтажные электрические схемы.

Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам следует присваивать в пределах этих устройств.

Если бы между ними было соединение, то мы бы увидели вот такую картину: Буквенное обозначение радиоэлементов в схеме Давайте еще раз рассмотрим нашу схему.

Рисунок 9 Каждой таблице присваивают позиционное обозначение элемента, взамен УГО которого она помещена.

Нормально отключенному положению выключателя соответствует заштрихованный прямоугольник, а не заштрихованный прямоугольник — выключатель включенный.
Обозначение радиодеталей на схеме

1 Область применения

Для изображения коммутационных устройств, входящих в электросистему, используют 4 основных обозначения.


Пример однолинейной схемы Монтажные электрические схемы. Е — ИМ, на который дополнительно установлен ручной привод. Как соединяются радиоэлементы в схеме Итак, вроде бы определились с задачей этой схемы.

Внутри групп устройства делятся по количеству полюсов, наличию защиты.

Иногда номинальные данные не указывают, в этом случае параметры элемента не имеют значения, можно выбрать и установить звено с минимальным значением. Самый простой пример — обыкновенный выключатель. Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Пусть это будет значок R2.

Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. Рисунок 6 Допускается при изображении на схеме элемента или устройства разнесенным способом позиционное обозначение каждой составной части элемента или устройства проставлять, как при совмещенном способе, но с указанием для каждой части обозначений выводов контактов. В принципиальных схемах разных отраслей имеются отличия в изображении отдельных элементов.

ОБОЗНАЧЕНИЯ БУКВЕННО-ЦИФРОВЫЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ


Включают в разработанные чертежи электрификации домов, квартир, производств. Если невозможно указать характеристики или параметры входных и выходных цепей изделия, то рекомендуется указывать наименование цепей или контролируемых величин. Поэтому, эта статья в основном именно для них.

Прописывается полная информация об элементе, емкость, если это конденсатор, номинальное напряжение, сопротивление для резистора. Второй вид более современный и активно применим, особенно в импортном оборудовании. Однобуквенная символика элементов Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом

Основные базовые изображения Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи. Вся информация представлена блоками с подписями — наименованиями устройств.
Условные графические обозначения радиоэлементов

Виды и типы электрических схем

В — Коллекторные электродвигатели постоянного тока: 1 — с возбуждением обмотки от постоянного магнита 2 — Электрическая машина с катушкой возбуждения В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная. Главное найти большую плоскость, на которую её можно будет разложить. При внесении изменений в схему последовательность присвоения порядковых номеров может быть изменена.

Дефакто-виды промышленных принципиальных схем. Совмещенный способ изображения устройства Разнесенный способ изображения устройства Рисунок 5 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под позиционным обозначением каждой составной части элемента или устройства допускается указывать в скобках обозначения зон или номера строк, в которых изображены все остальные составные части этого элемента или устройства см. Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Приведем в качестве примера основные графические обозначения для разных видов электрических схем. Большинство схем, которые созданы по ЕСКД, конструкторами и инженерами предприятий просто уродливы.

Каждый провод шины должен быть иметь собственное наименование. Неудобство этих схем в том, что замучаешься листать такую схему.

Таблица обозначений всевозможных токонесущих линий. Это дубликат более раннего документа — ГОСТ 2. Поэтому я называю составление принципиальной схемы искусством.

Виды и типы электрических схем

Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы. Основные правила составления принципиальных схем: Разбейте устройство на функциональные части: питание конечные входные устройства и прохождение сигнала до решающего устройства конечные выходные устройства и сигналы к ним от решающего устройства решающее устройство обмен данными с другим оборудованием Хорошо если удастся изобразить эти части на отдельных листах Движение сигналов схемы всегда! Существует множество вариантов обозначения, здесь я приведу наиболее распространённый, который соответствует ГОСТ 2. Большая часть обозначений — графические.

Рисунок 7 5. Внутри групп устройства делятся по количеству полюсов, наличию защиты. При выполнении схемы на неполных листах должны выполняться следующие требования: — нумерация позиционных обозначений элементов должна быть сквозной в пределах установка; — перечень элементов должен быть общим; — при повторном изображении отдельных элементов на других листах схемы следует охранять позиционные обозначения, присвоенные им на одном из первых листов схемы. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
Как читать электрические схемы. Урок №6

12. Источники питания, электродвигатели, линии связи — Условные графические обозначения на электрических схемах — Компоненты — Инструкции


Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.

 

 

 
 Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.

 

 Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.

 
 На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.

 
 В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).

 
 В устройствах автоматики и телемеханики, в бытовой радиоаппаратуре для привода различных механизмов применяют электродвигатели. В бытовых магнитофонах и проигрывателях — это чаше всего асинхронные двигатели переменного тока и коллекторные двигатели постоянного тока. Первые из них обычно имеют коротко-замкнутый ротор в виде так называемой «беличьей клетки» и статор с двумя обмотками: рабочей (или основной) и фазосдвигающей (последовательно с ней включают конденсатор, благодаря чему создается вращающееся магнитное поле). УГО такого двигателя состоит из окружности (ротор) и двух статорных обмоток (рис. 12.3, M1). Символ основной обмотки помешают над ротором, а фазосдвигающей — справа от него, под углом 90° к символу основной. Рядом с УГО обычно указывают тип двигателя [13].

 
 Если необходимый сдвиг фазы создается короткозамкнутым витком на полюсе статора, его изображают в виде замкнутой накоротко обмотки, развернутой по отношению к символу основной на угол 45° (см. рис. 12.3, M2).

 
 В электродвигателях постоянного тока на статоре устанавливают постоянные магниты, а обмотку размешают на роторе. Для автоматической коммутации ее секций при вращении ротора используют узел, состоящий из двух щеток и нескольких пластин. Все эти особенности конструкции отражены и в УГО коллекторного двигателя, показанном на рис. 12.3 {M3): здесь окружность, как и ранее, символизирует ротор, касающиеся его узкие прямоугольники — щетки, а светлая П-образная скобка — постоянные магниты на статоре.

 

 Линии электрической связи (ЛЭС) символизируют на схемах реальные электрические соединения между радиокомпонентами и узлами [14]. Для удобства прослеживания этих соединений на схемах ЛЭС чертят, как правило, только в горизонтальном и вертикальном направлениях. Исключение составляют лишь схемы некоторых функциональных узлов, начертание которых давно стало традиционным (измерительные и выпрямительные мосты, мультивибраторы и т. п.).

 

 
 Для удобства чтения схем символы элементов стараются расположить и сориентировать таким образом, чтобы ЛЭС имели возможно меньшее число изломов и пересечений. Если же избежать пересечения не удается, его делают под углом 90° (рис. 12.4, а), изменяя при необходимости направление одной из ЛЭС. В местах пересечений, символизирующих электрическое соединение в виде пайки, сварки, скрутки ставят жирные точки (см. рис. 12.4, б). Аналогично поступают и в тех случаях, когда необходимо показать ответвления от той или иной ЛЭС (см. рис. 12.4, в). Ответвляющиеся ЛЭС допускается проводить на чертеже под углами, кратными 15°. Использовать в качестве точек присоединения ЛЭС элементы УГО, имеющие вид точки (например, переключателей с нейтральным средним положением), излома линий (контакты кнопок и переключателей) и их пересечений (выводы эмиттера и коллектора в местах пересечения с окружностью корпуса и т. п.), нельзя.

 

 При изображении ЛЭС с ответвлениями в несколько параллельных идентичных цепей (рис. 12.4, г) можно использовать следующий прием: показать на схеме лишь одну цепь, а наличие остальных указать Г-образными ответвлениями, рядом с которыми указать общее число параллельных целей, включая изображенную (см. рис. 12.4, д).

 
 Необходимость экранирования того или иного соединения показывают штриховыми линиями по обе стороны от ЛЭС (см. рис. 12.4, е, ж) или небольшим штриховым кружком (см. рис. 12.4, и). Ответвление от линии, символизирующей экранирующую оплетку, допускается изображать как с точкой, так и без нее. Соединение с общим проводом устройства (корпусом) показывают отрезком утолщенной линии на конце ответвления (см. рис. 12.4, х, ц).

 
 Если в общий экран помещены несколько проводов, соответствующие ЛЭС объединяют знаком, изображенным на рис. 12.4, к. Если же разместить эти ЛЭС рядом не удается, поступают, как показано на рис. 12.4, л: от символа экрана проводят линию со стрелками, указывающими на те из них, которые находятся в общем экране. Экран, в который заключены детали того или иного устройства, изображают в виде замкнутого контура, охватывающего их символы (см. рис. 12.4, м).

 
Аналогичные приемы используют и в случаях, если группа ЛЭС символизирует соединение многопроводным кабелем или скрученными проводами. Знак кабеля в виде овала применяют для объединения идущих рядом ЛЭС (см. рис. 12.4, н), кружок со стрелками — для объединения ЛЭС, перемежающихся другими (см. рис. 12.4, п). Точно так же применяют знак скрутки — наклонную линию с засечками на концах (см. рис. 12.4, о,р).

 
Линию электрической связи, символизирующую гибкое соединение (например, гибкий провод, соединяющий измерительный прибор со щупом), изображают волнистой линией (см. рис. 12.4, с).

 
 Для передачи сигналов на высоких частотах используют коаксиальные кабели (см. рис. 12.4, m). Поскольку знак коаксиальной структуры практически символизирует внешний проводник, от него, как и от символа экранирования, при необходимости делают ответвление (см. рис. 12.4, у). В обозначении ЛЭС, выполненной коаксиальным кабелем лишь частично, знак видоизменяют: касательную к кружку направляют только в его сторону. Пример, показанный на рис. 12.4, ф, означает, что коаксиальная структура в данном случае имеется левее знака.

 
 Число ЛЭС на принципиальных схемах сложных электронных устройств очень часто бывает большим. Если к тому же они идут параллельно одна другой и неоднократно меняют направление, то иногда проследить связь между элементами становится очень трудно. Для облегчения чтения схем ГОСТ рекомендует разбивать параллельно идущие ЛЭС на подгруппы из трех линий каждая (считая сверху) и отделять их увеличенными интервалами (рис. 12.5, а).

 
 Однако и этого иногда оказывается недостаточно, если к тому же большое число параллельных ЛЭС сильно загромождает схему и увеличивают её размеры. В подобном случае можно слить параллельные ЛЭС в одну утолщенную линию групповой связи (ЛГС). При выполнении принципиальных схем автоматизированным способом допускается линию групповой связи не утолщать. У входа и выхода из ЛГС каждой ЛЭС присваивается порядковый номер (рис. 12.5, б). Чтобы не спутать эти линии с ЛЭС, просто пересекающей ЛГС, расстояние между соседними линиями, отходящими в разные стороны, должно быть не меньше 2 мм.

 

 

Для облегчения поиска отдельных ЛЭС допускается показывать их направление с помощью излома под углом 45° (рис. 12.5, в). При этом точка излома должна быть удалена от ЛГС не менее чем на 3 мм, а наклонные участки соседних ЛЭС, изображенных по одну сторону от нее, не должны иметь пересечений и общих точек.

ГОСТ 2.727-68 ЕСКД


ГОСТ 2.727-68

Группа Т52

МКС 01.080.40
29.240.10

Дата введения 1971-01-01

1. РАЗРАБОТАН И ВНЕСЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 13.08.68 N 1289

3. ВЗАМЕН ГОСТ 7624-62 в части разд.7

4. ИЗДАНИЕ (апрель 2010 г.) с Изменениями N 1, 2, утвержденными в декабре 1980 г., октябре 1993 г. (ИУС 3-81, 5-94), Поправкой (ИУС 3-91)

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения разрядников и предохранителей.

(Измененная редакция, Изм. N 1, 2).

1. Обозначения элементов электровакуумных приборов — по ГОСТ 2.731-81.

2. Обозначения защитных и испытательных разрядников приведены в табл.1.

Таблица 1

Наименование

Обозначение

1. Промежуток искровой:

а) двухэлектродный. Общее обозначение


б) двухэлектродный симметричный


в) трехэлектродный

2. Разрядник. Общее обозначение.


Примечание. Если необходимо уточнить тип разрядника, то применяют следующие обозначения:

а) разрядник трубчатый


б) разрядники вентильный и магнитовентильный


в) разрядник шаровой


г) разрядник роговой


д) разрядник угольный


е) разрядник электрохимический


Примечание к пп.в-е. Допускается обозначения заключать в прямоугольник.

ж) разрядник вакуумный


з) разрядник двухэлектродный ионный с газовым наполнением


и) разрядник ионный управляемый


к) разрядник шаровой с зажигающим электродом


л) разрядник симметричный с газовым наполнением


м) разрядник трехэлектродный с газовым наполнением

3. Обозначения высокочастотных разрядников приведены в табл.2.

Таблица 2

Наименование

Обозначение

1. Разрядник узкополосный:

а) с внешним резонатором

б) с внутренним резонатором


Примечание. При обозначении перенастраиваемого разрядника обозначение настройки (стрелку) указывают на изображении того элемента, которым осуществляется настройка, например:

перестройка осуществляется изменением размера разрядного промежутка разрядника


перестройка осуществляется резонатором


2. Включение узкополосного разрядника в волновод:

а) связь через отверстие связи


б) связь через петлю связи


3. Разрядник широкополосный:

а) защиты приемника


б) блокировка передатчика


в) предварительной защиты приемника


4. Разрядник сдвоенный:

а) защиты приемника


б) блокировки передатчика


2, 3. (Измененная редакция, Изм. N 1).

4. Обозначения предохранителей приведены в табл.3.


Таблица 3

Наименование

Обозначение

1. Предохранитель пробивной

2. Предохранитель плавкий
Общее обозначение


Примечание. Допускается в обозначении предохранителя указывать утолщенной линией сторону, которая остается под напряжением.


3. Предохранитель плавкий:

а) инерционно-плавкий


б) тугоплавкий


в) быстродействующий


4. Катушка термическая (предохранительная)


5. Предохранитель с сигнализирующим устройством:

а) с самостоятельной цепью сигнализации


б) с общей цепью сигнализации


в) без указания цепи сигнализации


6. Выключатель-предохранитель


7. Разъединитель-предохранитель


8. Выключатель трехфазный с автоматическим отключением любым из плавких предохранителей ударного действия


9. Выключатель-разъединитель (с плавким предохранителем)


10. Предохранитель плавкий ударного действия:

а) общее обозначение


б) с трехвыводным контактом сигнализации


в) с самостоятельной схемой сигнализации




(Измененная редакция, Изм. N 2).

Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
официальное издание
Единая система конструкторской
документации. Обозначения условные
графические в схемах: Сб. ГОСТов. —
М.: Стандартинформ, 2010

Как работает стабилитрон и для чего он нужен?

Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Содержание:

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.


Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Как работает стабилитрон и для чего он нужен?

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Как работает стабилитрон и для чего он нужен?

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Как работает стабилитрон и для чего он нужен?

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.

Как работает стабилитрон и для чего он нужен?
Как работает стабилитрон и для чего он нужен?

Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Как работает стабилитрон и для чего он нужен?

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Что такое транзистор-тестер
  • Как работает резистор
  • Как выпаивать радиодетали из плат
Опубликовано: 25.03.2020 Обновлено: 25.03.2020 нет комментариев

Electronics Club — Условные обозначения схем

Клуб электроники — символы схем Electronics Club

Провода | Расходные материалы | Устройства вывода | Переключатели | Резисторы | Конденсаторы | Диоды | Транзисторы | Аудио и радио | Метры | Датчики | Логические ворота

Следующая страница: Электричество и электрон

См. Также: Схемы соединений

Условные обозначения на схемах

Символы цепей используются в принципиальных схемах, показывающих, как соединены вместе.Фактическое расположение компонентов обычно сильно отличается от принципиальной схемы.

Для построения схемы вам понадобится другая схема, показывающая расположение деталей на макетная (для временных схем), стрипборд или печатная плата.

A circuit diagram

Принципиальная схема


Символы проводов и соединений

wire symbol
Проволока

Соединяет компоненты и легко передает ток от одной части цепи к другой.

wires joined symbol
Провода соединились

«Клякса» должна быть нарисована там, где соединяются (соединяются) провода, но иногда ее не показывают.Провода, подключенные на перекрестке, должны быть слегка смещены в шахматном порядке для образования двух Т-образных переходов. как показано справа.

wires crossing but not joined symbol
Провода не соединяются

В сложных схемах часто бывает необходимо провести пересечение проводов, даже если они не связано. Простое пересечение слева правильно, но может быть ошибочно прочитано как соединение, где о «капле» забыли. Символ моста справа не оставляет сомнений!



Символы источника питания

cell symbol
Ячейка

Поставляет электрическую энергию.Большая линия положительна (+). Единичный элемент часто называют аккумулятором, но, строго говоря, аккумулятор — это два или более элемента, соединенных вместе.

battery symbol
Аккумулятор

Поставляет электрическую энергию. Батарея состоит из более чем одной ячейки. Большая линия положительна (+).

solar cell symbol
Солнечная батарея

Преобразует свет в электрическую энергию.
Большая линия положительная (+).

DC power supply symbol
Источник постоянного тока

Поставляет электрическую энергию.
DC = постоянный ток, всегда протекающий в одном направлении.

Источник переменного тока
AC power supply symbol

Поставляет электрическую энергию.
AC = переменный ток, постоянно меняющий направление.

fuse symbol
Предохранитель

Устройство безопасности, которое «взорвется» (расплавится), если ток, протекающий через него, превысит заданное значение.

transformer symbol
Трансформатор

Две катушки проволоки, соединенные железным сердечником. Трансформаторы используются для повышения (увеличение) и понижение (уменьшение) переменного напряжения. Энергия передается между катушки магнитным полем в сердечнике, между катушками нет электрического соединения.

earth symbol
Земля (Земля)

Заземление. В некоторых электронных схемах этот символ используется для обозначения 0 В (ноль вольт) источника питания, но для электросети и некоторых радиосхем это действительно означает землю. Он также известен как земля.


Обозначения выходных устройств

lamp (lighting) symbol
Лампа (освещение)

Преобразователь, преобразующий электрическую энергию в свет. Этот символ используется для лампы, обеспечивающей освещение, например, автомобильной фары или лампы фонарика.

lamp (indicator) symbol
Лампа (индикатор)

Преобразователь, преобразующий электрическую энергию в свет. Этот символ используется для лампы, которая является индикатором, например, сигнальной лампой на приборной панели автомобиля.

heater symbol
Нагреватель

Преобразователь, преобразующий электрическую энергию в тепло.

Двигатель

Преобразователь, преобразующий электрическую энергию в кинетическую энергию (движение).

bell symbol
Белл

Преобразователь, преобразующий электрическую энергию в звук.

buzzer symbol
Зуммер

Преобразователь, преобразующий электрическую энергию в звук.

inductor symbol
Индуктор, катушка, соленоид

Катушка с проволокой, которая создает магнитное поле, когда через нее проходит ток. Внутри катушки может быть железный сердечник. Может использоваться как преобразователь преобразование электрической энергии в механическую, притягивая что-либо магнитным путем.


Символы переключения

push-to-make switch symbol
Выключатель нажимной

Кнопочный переключатель позволяет току течь только при нажатии кнопки.Это переключатель, используемый для управления дверным звонком.

push-to-break switch symbol
Автоматический выключатель

Этот тип переключателя нормально замкнут = включен, он разомкнут = выключен только при нажатии кнопки.

SPST on-off switch symbol
SPST, двухпозиционный выключатель

SPST = однополюсный, односторонний. Ток протекает только тогда, когда переключатель находится в положении «замкнуто = включено».

SPDT switch symbol
SPDT, двухпозиционный переключатель

SPDT = однополюсный, двусторонний. Двухпозиционный переключатель направляет поток тока по одному из двух путей в зависимости от его положения.Некоторые переключатели SPDT имеют центральное выключенное положение и описываются как «вкл-выкл-вкл».

DPST switch symbol
Переключатель DPST

DPST = двухполюсный, одинарный. Двойной двухпозиционный выключатель, который часто используется для переключения электросети, поскольку он может изолируйте как токоведущие, так и нейтральные соединения.

DPDT switch symbol
Переключатель DPDT

DPDT = двойной полюс, двойной бросок.
Этот переключатель может быть подключен как реверсивный переключатель для двигателя. Некоторые переключатели DPDT имеют центральное положение выключения.

relay symbol
Реле

Переключатель с электрическим приводом, например, цепь батареи 9 В, подключенная к катушка может переключать сеть переменного тока.Прямоугольник представляет катушку.
NO = нормально открытый, COM = общий, NC = нормально закрытый.


Не хватает денег на проекты в области электроники? Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk


Условные обозначения резисторов

resistor symbol
Резистор

Резистор ограничивает поток заряда. Использование включает ограничение тока, проходящего через светодиод, и медленно заряжают конденсатор в цепи синхронизации.
В некоторых публикациях используется старый символ резистора: old zig-zag resistor symbol

rheostat symbol
Реостат переменный резистор

Реостат имеет 2 контакта и обычно используется для контроля тока.Использование включает в себя управление яркостью лампы или скоростью двигателя и изменение скорости потока заряда в конденсатор в цепи синхронизации.

potentiometer symbol
Потенциометр переменного резистора

Потенциометр имеет 3 контакта и обычно используется для контроля напряжения. Его можно использовать таким образом как преобразователь положения (угла управляющего шпинделя) в электрический сигнал.

preset symbol
Предустановленный переменный резистор

Для работы с предустановкой используется небольшая отвертка или аналогичный инструмент.Он предназначен для настройки при замыкании цепи и затем остается без дальнейшей настройки. Пресеты дешевле стандартных переменных резисторов, поэтому их иногда используют в проектах для снижения стоимости.


Обозначения конденсаторов

Конденсатор неполяризованный
capacitor symbol

Конденсатор накапливает электрический заряд. Его можно использовать с резистором в цепи синхронизации, для сглаживания подачи (обеспечивает резервуар заряда) и может использоваться как фильтр (блокирует сигналы постоянного тока, но пропускает сигналы переменного тока).Неполяризованные конденсаторы обычно имеют небольшие номиналы, менее 1 мкФ.

polarised capacitor symbol
Конденсатор, поляризованный

Конденсатор накапливает электрический заряд. Поляризованные конденсаторы должны быть подключены правильно. Обычно они имеют большие значения, 1 мкФ и выше. См. Использование выше.

variable capacitor symbol
Конденсатор переменной емкости

В радиотюнере используется переменный конденсатор.

trimmer capacitor symbol
Подстроечный конденсатор переменной емкости

Этот тип переменного конденсатора предназначен для установки при замыкании цепи, а затем оставления без дальнейшей регулировки.


Диодные символы

diode symbol
Диод

Устройство, позволяющее току течь только в одном направлении.

LED symbol
Светоизлучающий диод

Преобразователь, преобразующий электрическую энергию в свет. Обычно сокращается до LED.

zener diode symbol
Стабилитрон

Для поддержания постоянного напряжения можно использовать стабилитрон.

photodiode symbol
Фотодиод

Светочувствительный диод.


Обозначения транзисторов

NPN transistor symbol
Транзистор NPN

Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения.Этот символ обозначает биполярный переходной транзистор (BJT), тип которого вы, скорее всего, будете использовать в первую очередь.

PNP transistor symbol
Транзистор PNP

Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения. Этот символ обозначает биполярный переходной транзистор (BJT), тип которого вы, скорее всего, будете использовать в первую очередь.

Phototransistor symbol
Фототранзистор

Светочувствительный транзистор.


Звуковые и радиосимволы

microphone symbol
Микрофон

Преобразователь, преобразующий звук в электрическую энергию.

earphone symbol
Наушники

Преобразователь, преобразующий электрическую энергию в звук.

loudspeaker symbol
Громкоговоритель

Преобразователь, преобразующий электрическую энергию в звук.

piezo transducer symbol
Пьезоэлектрический преобразователь

Преобразователь, преобразующий электрическую энергию в звук.

amplifier symbol
Усилитель (общее обозначение)

Схема усилителя с одним входом. На самом деле это символ блок-схемы потому что он представляет собой схему, а не только один компонент.

aerial symbol
Антенна (антенна)

Устройство для приема и передачи радиосигналов. Он также известен как антенна.


Измерители и осциллографы

voltmeter symbol
Вольтметр

Измеряет напряжение. Правильное название напряжения — «разность потенциалов», но более широко используется напряжение.

ammeter symbol
Амперметр

Измеряет ток.

galvanometer symbol
Гальванометр

Очень чувствительный измеритель, используемый для измерения крошечных токов, обычно 1 мА или меньше.

ohmmeter symbol
Омметр

Измеряет сопротивление. Большинство мультиметров имеют настройку омметра.

oscilloscope symbol
Осциллограф

Осциллограф используется для отображения «формы» электрических сигналов, показывая, как они меняются со временем. Его можно использовать для измерения напряжения и временных периодов.


Датчики (устройства ввода)

LDR symbol
LDR

Преобразователь, преобразующий яркость (свет) в сопротивление (электрическое свойство). LDR = светозависимый резистор

thermistor symbol
Термистор

Преобразователь, преобразующий температуру (тепло) в сопротивление (электрическое свойство).



Символы логического элемента

Логические вентили обрабатывают сигналы, которые представляют истинных (1, высокий, + Vs, вкл.) Или ложных (0, низкий, 0В, выкл.). Для получения дополнительной информации см. Страницу о логических вентилях. Есть два набора символов: традиционный и IEC (Международная электротехническая комиссия).

НЕ

Элемент НЕ может иметь только один вход. «О» на выходе означает «нет». Выход логического элемента НЕ обратный (напротив) его входа, поэтому выход истинен, когда вход ложен.Элемент НЕ также называется инвертором.

NOT gate traditional symbol
Традиционный

NOT gate IEC symbol
МЭК

И

Логический элемент И может иметь два или более входов. Выход логического элемента И истинен, когда все его входы истинны.

AND gate traditional symbol
Традиционный

AND gate IEC symbol
МЭК

NAND

Логический элемент И-НЕ может иметь два или более входов.’O’ на выходе означает ‘не’, показывая, что это N от И ворота. Выход логического элемента И-НЕ истинен, если не все его входы истинны.

NAND gate traditional symbol
Традиционный

NAND gate IEC symbol
МЭК

ИЛИ

Логический элемент ИЛИ может иметь два или более входов. Выход логического элемента ИЛИ истинен, если хотя бы один из его входов истинен.

OR gate traditional symbol
Традиционный

OR gate IEC symbol
МЭК

НОР

Логический элемент ИЛИ-НЕ может иметь два или более входов.’O’ на выходе означает ‘не’, показывая, что это N от OR ворота. Выход логического элемента ИЛИ-ИЛИ истинен, когда ни один из его входов не истинен.

NOR gate traditional symbol
Традиционный

NOR gate IEC symbol
МЭК

EX-OR

Элемент EX-OR может иметь только два входа. Выход логического элемента EX-OR истинен, когда его входы различны (один истинный, один ложный).

EX-OR gate traditional symbol
Традиционный

EX-OR gate IEC symbol
МЭК

EX-NOR

Гейт EX-NOR может иметь только два входа.’O’ на выходе означает ‘not’, показывая, что это N ot EX-OR ворота. Выход логического элемента EX-NOR является истинным, когда его входы одинаковы (оба истинны или оба ложны).

EX-NOR gate traditional symbol
Традиционный

EX-NOR gate IEC symbol
МЭК



Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

,

Электрические символы | Электронные символы

Электрические символы и символы электронных схем используются для построения принципиальной схемы.

Символы обозначают электрические и электронные компоненты.

Светодиод
Символ Название компонента Значение
Обозначения проводов
Электрический провод Проводник электрического тока
Подключенные провода Подъездной переход
Не подключенные провода Провода не подключены
Символы переключателей и символы реле
Тумблер SPST Отключает ток при открытии
Тумблер SPDT Выбирает одно из двух подключений
Кнопочный переключатель (N.O) Выключатель мгновенного действия — нормально открытый
Кнопочный переключатель (Н.З.) Выключатель мгновенного действия — нормально замкнутый
DIP-переключатель DIP-переключатель используется для бортовой конфигурации
Реле SPST Реле открытия / закрытия с помощью электромагнита
SPDT реле
Джемпер Закройте соединение, вставив перемычку на контакты.
Паяльный мост Припой для закрытия соединения
Наземные символы
Земля Земля Используется для нулевого потенциала ведения и электрической защиты от ударов.
Шасси наземное Подключен к шасси цепи
Цифровой / Общий
Символы резисторов
Резистор (IEEE) Резистор снижает ток.
Резистор (IEC)
Потенциометр (IEEE) Регулируемый резистор — имеет 3 вывода.
Потенциометр (IEC)
Переменный резистор / реостат (IEEE) Регулируемый резистор — имеет 2 вывода.
Переменный резистор / реостат (IEC)
Подстроечный резистор Предустановленный резистор
Термистор Терморезистор — изменение сопротивления при изменении температуры
Фоторезистор / Светозависимый резистор (LDR) Фоторезистор — изменение сопротивления при изменении силы света
Обозначения конденсаторов
Конденсатор Конденсатор используется для хранения электрического заряда.Он действует как короткое замыкание с переменным током и разрыв цепи с постоянным током.
Конденсатор
Поляризованный конденсатор Конденсатор электролитический
Поляризованный конденсатор Конденсатор электролитический
Переменный конденсатор Регулируемая емкость
Обозначения индуктора / катушки
Индуктор Катушка / соленоид, создающий магнитное поле
Индуктор с железным сердечником Включая утюг
Переменный индуктор
Обозначения источников питания
Источник напряжения Генерирует постоянное напряжение
Источник тока Генерирует постоянный ток.
Источник напряжения переменного тока Источник переменного напряжения
Генератор Электрическое напряжение создается за счет механического вращения генератора
Батарейный элемент Генерирует постоянное напряжение
Аккумулятор Генерирует постоянное напряжение
Управляемый источник напряжения Генерирует напряжение как функцию напряжения или тока другого элемента схемы.
Управляемый источник тока Генерирует ток как функцию напряжения или тока другого элемента схемы.
Обозначения счетчиков
Вольтметр Измеряет напряжение. Обладает очень высокой стойкостью. Подключил параллельно.
Амперметр Измеряет электрический ток.Имеет почти нулевое сопротивление. Подключил поочередно.
Омметр Меры сопротивления
Ваттметр Меры электроэнергии
Обозначения ламп / лампочек
Лампа / лампочка Генерирует свет при протекании тока через
Лампа / лампочка
Лампа / лампочка
Символы диодов / светодиодов
Диод Диод позволяет току течь только в одном направлении — слева (анод) направо (Катод).
Стабилитрон Позволяет току течь в одном направлении, но также может течь в обратном направлении, когда напряжение пробоя выше
Диод Шоттки Диод Шоттки — диод с низким падением напряжения
Варактор / варикап диод Диод переменной емкости
Туннельный диод
Светоизлучающий диод (LED) излучает свет, когда ток проходит через
Фотодиод Фотодиод пропускает ток при воздействии света
Обозначения транзисторов
Биполярный транзистор NPN Обеспечивает прохождение тока при высоком потенциале в основании (в центре)
Биполярный транзистор PNP Обеспечивает прохождение тока при низком потенциале в основании (в центре)
Транзистор Дарлингтона Изготовлен из 2-х биполярных транзисторов.Имеет общий прирост продукта каждого прироста.
JFET-N Транзистор N-канальный полевой транзистор
JFET-P Транзистор П-канальный полевой транзистор
NMOS транзистор N-канальный МОП-транзистор
PMOS транзистор P-канальный МОП-транзистор
Разное.Символы
Двигатель Электродвигатель
Трансформатор Изменить напряжение переменного тока с высокого на низкий или с низкого на высокое.
Электрический звонок Звонит при активации
Зуммер Воспроизводить жужжащий звук
Предохранитель Предохранитель отключается, когда ток превышает пороговое значение.Используется для защиты схемы от сильных токов.
Предохранитель
Автобус Содержит несколько проводов. Обычно для данных / адреса.
Автобус
Автобус
Оптопара / оптоизолятор Оптопара изолирует соединение с другой платой
Громкоговоритель Преобразует электрический сигнал в звуковые волны
Микрофон Преобразует звуковые волны в электрический сигнал
Операционный усилитель Усилить входной сигнал
Триггер Шмитта Работает с гистерезисом для снижения шума.
Аналого-цифровой преобразователь (АЦП) Преобразует аналоговый сигнал в цифровые числа
Цифро-аналоговый преобразователь (ЦАП) Преобразует цифровые числа в аналоговый сигнал
Кристаллический осциллятор Используется для генерации точного тактового сигнала частоты
Постоянный ток Постоянный ток генерируется от постоянного уровня напряжения
Обозначения антенн
Антенна / антенна Передает и принимает радиоволны
Антенна / антенна
Дипольная антенна Двухпроводная простая антенна
Символы логических вентилей
НЕ ворота (инвертор) Выходы 1, когда вход 0
И Ворота Выходы 1, когда оба входа равны 1.
NAND Gate Выводит 0, когда оба входа равны 1. (НЕ + И)
OR Выход Выходы 1, когда любой вход 1.
NOR Ворота Выводит 0, когда любой вход равен 1. (НЕ + ИЛИ)
Ворота XOR Выходы 1, если входы разные.(Эксклюзивное ИЛИ)
D Триггер Хранит один бит данных
Мультиплексор / мультиплексор от 2 до 1 Подключает выход к выбранной входной линии.
Мультиплексор / мультиплексор от 4 до 1
Демультиплексор / демультиплексор с 1 по 4 Подключает выбранный выход к входной линии.
.

электрических символов — источники энергии | Электрические символы, символы электрических схем | Элементы дизайна — Источники питания

Картридер с клавиатурой

Card reader with keypad, card reader, keypad,

Биометрический доступ

Biometric access, biometric access reader, biometric access,

Карточка доступа

Card access, card access reader, card access,

Клавиатура

Keypad device, keypad device,

Клавиатура

Keypad, keypad,

Защитная клавиатура

Security keypad, security keypad,

Звуковой сигнал / сирена

Horn / siren, horn, siren,

Устойчивый к атмосферным воздействиям звуковой сигнал / сирена

Weatherproof horn / siren, weatherproof, horn, siren,

Рупор / строб

Horn / strobe, horn, strobe,

Строб

Strobe, strobe,

Картридер с таймером

Card reader with time, card reader, time, attendance,

Турникет

Turnstile, turnstile,

Карусельная дверь

Revolving door, revolving door,

Рычаг

Traffic arm, traffic arm,

Детектор петель автомобиля

Vehicle loop detector, vehicle loop detector,

Детектор дыма

Smoke detector, smoke detector,

Тепловой извещатель

Heat detector, heat detector,

Детектор газа

Gas detector, gas detector,

Детектор угарного газа

Carbon monoxide detector, carbon monoxide detector, CO detector,

Датчик затопления

Flood sensor, flood sensor,

Электронный замок

Electronic lock, electronic lock,

Выходное устройство

Exit device, exit device,

Кнопка

Pushbutton, pushbutton,

Тревожная кнопка

Panic button, panic button,

Камера с клавиатурой

Camera with keypad, camera, keypad,

Камера

Camera, camera,

Камера с домофоном

Camera with intercom, camera, intercom,

Камера с картридером

Camera with card reader, camera, card reader,

Экран окна безопасности

Security window screen, security window screen,

Оконный контактный датчик

Window contact sensor, window contact sensor,

Датчик вибрации / удара

Vibration / shock sensor, vibration sensor, shock sensor,

Экран сигнализации

Screen alarm, screen alarm,

Датчик разбития стекла

Glass break detector, glass break detector,

Датчик дверного контакта

Door contact sensor, door contact sensor,

Коврик напольный

Floor mat, floor mat,

Датчик проезжей части

Driveway sensor, driveway sensor,

Контактный датчик верхней двери

Overhead door contact sensor, overhead door contact sensor, door contact sensor,

Настенный датчик движения

Wall motion sensor, wall motion sensor, motion sensor,

Датчик движения пола

Floor motion sensor, floor motion sensor, motion sensor,

Блок контроля безопасности

Security control unit, security control unit,

Защитный дверной контакт

Security door contact, security door contact,

Контрольная панель безопасности

Security control panel, security control panel,

Считыватель карт безопасности

Security card reader, security card reader,

Детектор движения

Motion detector, motion detector,

Главный домофон

Master intercom, master intercom,

Магнитный замок, сигнализация двери повышенной безопасности

Magnetic lock, security door alarm, magnetic lock, security door alarm,

Домофон

Intercom unit, intercom unit,

Электрическая защелка двери

Electric door strike, electric door strike,

Электрический открыватель двери

Electric door opener, electric door opener,

Дверной зуммер

Door buzzer, door buzzer,

Дверной звонок

Door chime, door chime,

Дверной звонок

Doorbell, doorbell,

Детектор объемной емкости

Volumetric capacity detector, volumetric capacity detector,

Сирена

Siren, siren,

Приемник

Receiver, receiver,

Поле зрения PIR

PIR field of view, PIR field of view,

Источник питания от сети

Mains supply power source, mains supply power source,

Инфракрасный извещатель

Infrared detector, infrared detector,

Тепловой извещатель

Heat detector, heat detector,

Детектор фольга на стекле

Foil on glass detector, foil on glass detector,

Удаленное оборудование для удаленного доступа

Dial-up remote equipment, dial-up remote equipment,

Нарушение ограждения балки

Beam fence disturbance, beam fence disturbance,

Клавишный переключатель управления пользователем

User control keyswitch, user control keyswitch,

Цифровая клавиатура управления пользователем

User control digital keypad, user control digital keypad,

Ультразвуковой приемопередатчик

Ultrasonic transceiver, ultrasonic transceiver,

Трансформатор

Transformer, transformer,

Устройство обнаружения космоса

Space detection device, space detection device,

Ведомый магнитофон

Slave tape dialer, slave tape dialer,

Подчиненный цифровой коммуникатор

Slave digital communicator, slave digital communicator,

Сигнализатор удаленной зоны

Remote zone annunciator, remote zone annunciator,

Пассивный инфракрасный

Passive infrared, passive infrared,

Приемопередатчик СВЧ

Microwave transceiver, microwave transceiver,

Монитор обрезки линии

Line cut monitor, line cut monitor,

Инфразвуковой

Infrasonic, infrasonic,

Фольга

Foil, foil,

Аварийное питание / аккумулятор

Emergency power / battery, emergency power, emergency battery,

Устройство с двойной технологией

Dual technology device, dual technology device,

Блок управления

Control unit, control unit,

Контактная поверхность переключателя

Contact switch surface, contact switch surface,

Контактный выключатель скрытый

Contact switch flush, contact switch flush, ,

электрических символов — источники энергии | Элементы дизайна — Источники энергии | Электрические символы, символы электрических схем

Выходной направленный ответвитель 1

Output Directional Tap 1, output directional tap,

Выходной направленный ответвитель 2

Output Directional Tap 2, output directional tap,

Выходной направленный ответвитель 3

Output Directional Tap 3, output directional tap,

Выходной направленный ответвитель 4

Output Directional Tap 4, output directional tap,

Направленный ответвитель 5

Output Directional Tap 5, output directional tap,

2-полосный разветвитель

2-way Splitter, splitter,

3-х полосный разветвитель

3-way Splitter, splitter,

Разветвитель на 4 линии

4-way Splitter, splitter,

Блок питания переменного тока

AC Power Block, AC, power block,

Облигация

Bond, bond,

Вниз парень

Down Guy, down guy,

Строитель и якорь

Building Guy and Anchor, building guy, anchor,

Рок-парень с якорем

Rock Guy with Anchor, rock guy, anchor,

Вниз парень с якорем

Down Guy with Anchor, down guy, anchor,

Межполюсный парень

Pole-to-Pole Guy, pole-to-pole guy,

Парень, спускающийся по тротуару, с якорем

Sidewalk Down Guy with Anchor, sidewalk down guy, anchor,

Парень по тротуару

Sidewalk Down Guy, sidewalk down guy,

Промежуточный провод со слабым пролетом

Slack Span Messenger Wire, slack span messenger wire,

Натяжной провод без кабеля

Tensioned Messenger Wire w/out cable, tensioned messenger wire,

Натяжной мессенджер

Tensioned Messenger Wire, tensioned messenger wire,

Земля

Ground, ground,

Совместное использование (силовая и телефонная опора)

Joint Usage (Power & Telephone Pole), joint usage pole, joint use pole, power, telephone,

Совместная опора Usgae с трансформатором

Joint Usgae Pole with Transformer, joint usage pole, joint use pole, transformer,

Стойка

Strut, strut,

Парень на дереве с якорем

Tree Guy with Anchor, tree guy, anchor,

Нажимная скоба (меньший полюс в фактическом относительном положении)

Push Brace (smaller pole in actual relative position), push brace, pole,

Удлинитель

Extension Arm, extension arm,

Построенная опора CATV

Built CATV Pole, built CATV pole,

Предлагаемая опора кабельного телевидения

Proposed CATV Pole, proposed CATV pole,

Направленный ответвитель 1

Directional Tap 1, directional tap,

Направленный ответвитель 2

Directional Tap 2, directional tap,

Люк

Manhole, manhole,

Телефонный столб

Telephone Pole, telephone pole,

Опора стояка

Riser Pole, riser pole,

Портативное хранилище

Vault Handheld, vault handheld,

Фиксированный эквалайзер

Fixed Equalizer, fixed equalizer,

Фиксированные плоские аттенюаторы

Fixed Flat Attenuators, fixed flat attenuators,

Прочие вспомогательные конструкции

Other Supporting Structures, supporting structures,

Пьедестал — подземная трасса

Pedestal - Underground Routing, pedestal, underground routing,

Опора мощности

Power Pole, power pole,

Прямая подземная трасса

Direct Buried Underground Routing, direct buried underground routing,

Прокладка подземных трубопроводов

Duct Line Underground Routing, duct line, underground routing,

Окончание линии

Line Terminations, line terminations,

Место соединения двухсторонних оптических кабелей

2-Way Optical Splice Location, optical splice location,

Место соединения 3-сторонних оптических кабелей

3-Way Optical Splice Location, optical splice location,

Место стыковки 4-сторонних оптических кабелей

4-Way Optical Splice Location, optical splice location,

> Место стыковки 4-сторонних оптических кабелей

> 4-Way Optical Splice Location, optical splice location,

Оптический усилитель

Optical Amplifier, optical amplifier,

Кабель сумматора переменного тока

Cable AC Power Combiner, cable AC power combiner,

Оптоволоконный кабель

Optical Fiber Cable, optical fiber cable,

Оптический разъем

Optical Connector, optical connector,

Демультиплексор длины волны

Wavelength Demultiplexer, wavelength demultiplexer,

Мультиплексор длины волны

Wavelength Multiplexer, wavelength multiplexer,

Оптический передатчик

Optical Transmitter, optical transmitter,

Оптический передатчик

Optical Transmitter, optical transmitter,

Оптический узел

Optical Node, optical node,

Оптический разветвитель

Optical Splitter, optical splitter,

Головная станция (обработка сигналов)

Headend (Signal Processing), headend, signal processing,

Узел

Node, node,

Первичный концентратор

Primary Hub, primary hub,

Вторичный концентратор

Secondary Hub, secondary hub,

Коаксиальный соединитель

Coaxial Splice, coaxial splice,

Блок питания

Power Supply, power supply,

Переменный эквалайзер

Variable Equalizer, variable equalizer, ,

0 comments on “Условное обозначение блока питания на схеме: Условные графические и буквенные обозначения электрорадиоэлементов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *