Автотрансформатор на схемах изображают следующим образом – Справочник электрика: Обозначение трансформаторов, автотрансформаторов

Автотрансформатор: описание, конструкция, схема

В данной статье подробно опишем все про автотрансформатор, его конструкцию и принцип работы, а так же рассмотрим переменный автотрансформатор.

Описание

В отличие от трансформатора напряжения, который имеет две электрически изолированные обмотки: первичную и вторичную, автотрансформатор имеет только одну одиночную обмотку напряжения, которая является общей для обеих сторон. Эта отдельная обмотка «постукивает» по разным точкам вдоль своей длины, чтобы обеспечить процент первичного напряжения питания на его вторичной нагрузке. Тогда автотрансформатор имеет обычный магнитный сердечник, но имеет только одну обмотку, которая является общей для первичной и вторичной цепей.

Поэтому в автотрансформаторе первичная и вторичная обмотки связаны друг с другом как электрически, так и магнитно. Основным преимуществом этого типа конструкции трансформатора является то, что он может быть значительно дешевле при той же номинальной мощности ВА, но самым большим недостатком автотрансформатора является то, что он не имеет изоляции первичной / вторичной обмотки обычного трансформатора с двойной обмоткой.

Участок обмотки, обозначенный как первичная часть обмотки, соединен с источником питания переменного тока, причем вторичная обмотка является частью этой первичной обмотки. Автотрансформатор также можно использовать для повышения или понижения напряжения питания путем изменения направления соединений. Если первичная обмотка является общей обмоткой и подключена к источнику питания, а вторичная цепь подключена только через часть обмотки, то вторичное напряжение «понижается», как показано ниже.

Конструкция автотрансформатора

Когда первичный ток P протекает через одну обмотку в направлении стрелки, как показано, вторичный ток I S протекает в противоположном направлении. Таким образом, в части обмотки, которая генерирует вторичное напряжение, В S ток , вытекающий из обмотки представляет собой разность P и I S .

Автотрансформатор также может быть построен с более чем одной точкой врезки. Автотрансформаторы могут использоваться для подачи различных точек напряжения вдоль его обмотки или увеличения напряжения питания относительно напряжения питания V P, как показано на рисунке.

Автотрансформатор с несколькими точками подключения

Стандартный метод маркировки обмоток автотрансформатора — маркировать его заглавными буквами, например, A , B , Z и т.д. Обычно общее нейтральное соединение обозначается как N или n . Для вторичных ответвлений используются номера суффиксов для всех точек ответвления вдоль первичной обмотки автотрансформатора. Эти числа обычно начинаются с цифры « 1 » и продолжаются в порядке возрастания для всех точек касания, как показано на рисунке.

Автотрансформаторный терминал маркировки

Автотрансформатор используется в основном для регулировки линейных напряжений, чтобы либо изменить его значение, либо сохранить его постоянным. Если регулировка напряжения на небольшую величину, либо вверх, либо вниз, то коэффициент трансформатора мал, так как P и S почти равны. Токи P и S также почти равны.

Следовательно, часть обмотки, которая несет разницу между двумя токами, может быть изготовлена ​​из проводника намного меньшего размера, поскольку токи намного меньше, что экономит затраты на эквивалентный трансформатор с двойной обмоткой.

Однако регулирование, индуктивность рассеяния и физический размер (поскольку нет второй обмотки) автотрансформатора для заданного значения ВА или КВА ниже, чем для трансформатора с двойной обмоткой.

Автотрансформаторы явно намного дешевле, чем обычные трансформаторы с двойной обмоткой и той же оценкой ВА. При принятии решения об использовании автотрансформатора обычно сравнивают его стоимость со стоимостью эквивалентного типа с двойной обмоткой.

Это делается путем сравнения количества меди, сэкономленной в обмотке. Если отношение « n » определено как отношение более низкого напряжения к более высокому напряжению, то можно показать, что экономия в меди составляет: n * 100% . Например, экономия на меди для двух автотрансформаторов будет:

Автотрансформатор пример

Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.

Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.

Недостатки автотрансформатора

  • Основным недостатком автотрансформатора является то, что он не имеет изоляции первичной и вторичной обмоток обычного трансформатора с двойной обмоткой. Тогда автотрансформатор нельзя безопасно использовать для понижения более высоких напряжений до гораздо более низких напряжений, подходящих для меньших нагрузок.
  • Если обмотка вторичной стороны становится разомкнутой, ток нагрузки прекращает протекать через первичную обмотку, останавливая действие трансформатора, в результате чего на вторичные клеммы подается полное первичное напряжение.
  • Если вторичная цепь испытывает состояние короткого замыкания, результирующий первичный ток будет намного больше, чем у эквивалентного трансформатора с двойной обмоткой, из-за увеличенного магнитного потока, повреждающего автотрансформатор.
  • Поскольку нейтральное соединение является общим как для первичной, так и для вторичной обмотки, заземление вторичной обмотки автоматически заземляет первичную, поскольку между этими двумя обмотками нет изоляции. Трансформаторы с двойной обмоткой иногда используются для изоляции оборудования от земли.

Автотрансформатор имеет множество применений и устройств, в том числе и пуск асинхронных двигателей, используемых для регулирования напряжения линий электропередачи, и может быть использована для преобразования напряжения, когда первичные к вторичному отношению близко к единице.

Автотрансформатор также может быть изготовлен из обычных двухобмоточных трансформаторов путем последовательного соединения первичной и вторичной обмоток, и в зависимости от того, как выполнено соединение, вторичное напряжение может увеличивать или уменьшать первичное напряжение.

Переменный автотрансформатор

Наряду с наличием фиксированной или постукивающей вторичной обмотки, которая создает выходное напряжение на определенном уровне, существует еще одно полезное применение устройства типа автотрансформатора, которое можно использовать для получения переменного напряжения от источника переменного тока с фиксированным напряжением. Этот тип  переменного автотрансформатора обычно используется в лабораториях и научных лабораториях в школах и колледжах и более известен как Variac.

Конструкция переменного автотрансформатора, или вариака, такая же, как и для фиксированного типа. Одинарная первичная обмотка, намотанная на многослойный магнитный сердечник, используется, как в автотрансформаторе, но вместо того, чтобы фиксироваться в некоторой заранее определенной точке ответвления, вторичное напряжение отводится через угольную щетку.

Эта угольная щетка вращается или может скользить вдоль открытой части первичной обмотки, соприкасаясь с ней по мере движения, обеспечивая требуемый уровень напряжения.

Затем переменный автотрансформатор содержит переменный отвод в форме угольной щетки, которая скользит вверх и вниз по первичной обмотке, которая контролирует длину вторичной обмотки, и, следовательно, вторичное выходное напряжение полностью изменяется от значения первичного напряжения питания до нуля вольт.

Переменный автотрансформатор обычно имеет значительное количество первичных обмоток для создания вторичного напряжения, которое можно регулировать в диапазоне от нескольких вольт. Это достигается благодаря тому, что угольная щетка или ползун всегда находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по ее длине. Тогда выходное напряжение становится пропорциональным угловому вращению.

Мы видим, что вариак может плавно регулировать напряжение на нагрузке от нуля до номинального напряжения питания. Если в некоторой точке вдоль первичной обмотки было подано напряжение питания, то потенциально вторичное выходное напряжение могло бы быть выше, чем фактическое напряжение питания. Переменный автотрансформатор также можно использовать для регулировки яркости света, а при использовании в этом типе приложений их иногда называют «диммерами».

Вариак также очень полезен в электротехнических и электронных мастерских и лабораториях, так как они могут использоваться для обеспечения переменного питания. Но следует соблюдать осторожность с подходящей защитой предохранителей, чтобы гарантировать, что более высокое напряжение питания не присутствует на вторичных клеммах в условиях неисправности.

Автотрансформатор имеет много преимуществ по сравнению с обычными трансформаторами двойных обмоток. Они, как правило, более эффективны при одинаковом номинальном значении ВА, имеют меньшие размеры и, поскольку в их конструкции требуется меньше меди, их стоимость ниже по сравнению с трансформаторами с двойной обмоткой с одинаковыми номинальными характеристиками. Кроме того, их потери в сердечнике и меди, I 2 R , ниже из-за меньшего сопротивления и реактивного сопротивления рассеяния, обеспечивающих более высокое регулирование напряжения, чем у эквивалентных двухобмоточных трансформаторов.

В следующей статье о трансформаторах мы рассмотрим другой дизайн трансформатора, у которого нет обычной первичной обмотки, намотанной вокруг его сердечника. Этот тип трансформатора обычно называют трансформатором токаи используется для питания амперметров и других таких индикаторов электрической мощности.

meanders.ru

Чтение схем: трансформаторы, автотрансформаторы. | Каталог самоделок

В основы обозначений трансформаторов и автотрансформаторов на электротехнических схемах принимаются обозначения обмоток, корпуса, магнитопроводов,  экрана, а также и обозначения типов соединения обмоток. Давайте все это рассмотрим поподробнее.

Обмотки.   В схемах (обычно в схемах электроснабжения) обмотки обозначают в виде окружности, которая проиллюстрирована на  рис. № 1.  Во всех других случаях обмотки иллюстрируются полуокружностями №№ 2-5, причем количество полуокружностей и направления выводов не устанавливается. А изображенная на рис № 3 точка, рядом с обмоткой, обозначает начало обмотки.

На электротехнических схемах, при изображении обмоток окружностями, иногда, в них вписываются обозначения №№ 13-23   вида соединения, которые приведены на рисунке ниже. Здесь под обозначениями, которые состоят из черточек, приведены поясняющие схемы.

На рисунке: № 13  – однофазная обмотка с двумя выводами. № 14 – однофазная обмотка с двумя выводами  с выведенной нейтральной (средней) точкой. № 15  – соединение обмоток двух фаз в открытый треугольник. № 16 – три однофазные обмотки, каждая из которых имеет по два вывода.  № 17 – трехфазная обмотка, соединенная в «звезду». № 18  – также трехфазная обмотка, соединенная в звезду с выведенной нейтралью. № 19  трехфазная обмотка, соединенная в треугольник. № 20 – трехфазная обмотка, где три фазы соединены в разомкнутый треугольник. № 21 – трехфазная обмотка, соединенная в зигзаг. № 22 – шестифазная обмотка, которая соединена в виде обратной звезды. № 23 – то же, что и № 22, только с выведенными раздельными нейтральными точками.

Магнитопроводы. В схемах электроснабжения магнитопроводы допускается не иллюстрировать, если это, конечно, не вызывает затруднений и путаницу в схемах. Во всех других случаях этот элемент изображается обозначениями №№ 7—10. Здесь №7 — магнитопровод ферромагнитный.

(Обратите внимание: до недавнего времени у магнитопровода было другое обозначение: 3 – тонкие черты, как бы представляющие листы стали, из которых набран магнитопровод). Затем магнитопровод стали изображать жирной чертой. В настоящее время у обозначений, толщина линий, обозначающих магнитопровод и обмотку, одинакова.

№ 8 — ферромагнитный магнитопровод с воздушным зазором. Небольшой воздушный зазор нужен в том случае, когда по обмотке проходит не только переменный, но и постоянный ток, который при отсутствии зазора мог бы насытить магнитопровод;

№ 9 — магнитодиэлектрический магнитопровод. Такие магнитопроводы применяются в радиосвязи для уменьшения потерь на вихревые токи. В этих сердечниках ферромагнитные частицы разделены массой изоляционного материала.

№ 10 — магнитопровод из немагнитного материала, например из алюминия или меди. Для немагнитного магнитопровода указывают химический символ металла. Например, буквы Cu указывают на то, что магнитопровод медный. Магнитопровод из немагнитного материала играет такую же роль, как множество короткозамкнутых витков, введенных в магнитное поле обмотки. В немагнитном магнитопроводе водятся вихревые токи, магнитное поле которых противодействует основному полю, чем достигается уменьшение индуктивности.

Корпус трансформатора и автотрансформатора – на схемах обычно не изображается. Если же надо показать, что корпус присоединен к чему-либо, то это иллюстрируется обозначением № 12. Нередко корпус трансформатора соединяется с экраном.  Корпуса трансформаторов приходится так же показывать и в некоторых схемах релейной защиты.  Экран обозначается тонкой штриховой линией № 6. Подробнее про обозначения экранов, можете прочитать тут.

На обозначении № 11 проиллюстрирован регулятор, здесь он показывает, что в сборке имеется трансформаторы с регулированием напряжения с нагрузкой.

Примеры обозначений трансформаторов даны на рисунке ниже.

В разделе «а» показано однолинейное – 1, и многолинейное  – 2 обозначение однофазного трансформатора с ферромагнитным сердечником (форма I). 3 – изображение этого же трансформатора в форме II.  В разделе «б»   изображены: № 4 – трансформатор с ферромагнитным магнитопроводом, который имеет воздушный зазор. № 5   трансформатор с медным (немагнитным) магнитопроводом. № 6 – трансформатор магнитодиэлектрическим магнитопроводом. № 7 – без магнитопровода.

Автотрансформаторы. Однофазный автотрансформатор в однолинейном и многолинейном изображениях проиллюстрирован ниже на рисунке по обозначениями 1 и 2 соответственно. Хорошим примером применения этих однофазных трансформаторов является: № 3 понижения напряжения сети с 220 вольт для питания прибора (например, холодильника) на напряжение в 127 вольт. № 4 показывает повышение напряжения с 127 до 220 В. Также в разделе «б» изображены трехфазные автотрансформаторы, где № 5 показывает, что обмотки соединены в звезду, а № 6 – трехфазный трансформатор с 9-ю выводами.

Как Вы видите, чтение схем не очень то и тяжелая вещь, самое главное уметь логически связать обозначения.

volt-index.ru

Автотрансформатор — Википедия

Схема автотрансформатора с регулированием напряжения. Автотрансформатор АТДЦТН-125000/330/110

А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения[1].

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Распространены аббревиатуры:

ЛАТР — Лабораторный АвтоТрансформатор Регулируемый.
РНО — Регулятор Напряжения Однофазный.
РНТ — Регулятор Напряжения Трёхфазный.
Схема автотрансформатора.

Предположим, что источник электрической энергии (сеть переменного тока) подключен к виткам ω1{\displaystyle \omega _{1}} обмотки автотрансформатора, а потребитель — к некоторой части этой обмотки ω2{\displaystyle \omega _{2}}.

При прохождении переменного тока по обмотке автотрансформатора возникает переменный магнитный поток, индуцирующий в этой обмотке электродвижущую силу, величина которой прямо пропорциональна числу витков обмотки.

Следовательно, если во всей обмотке автотрансформатора, имеющей число витков ω1{\displaystyle \omega _{1}}, индуцируется электродвижущая сила E1{\displaystyle E_{1}}, то в части этой обмотки, имеющей число витков ω2{\displaystyle \omega _{2}}, индуцируется электродвижущая сила E2{\displaystyle E_{2}}. Соотношение величин этих ЭДС выглядит так: E1E2=ω1ω2=k{\displaystyle {{E_{1}} \over {E_{2}}}={{\omega _{1}} \over {\omega _{2}}}=k}, где k{\displaystyle k} — коэффициент трансформации.

Так как падение напряжения в активном сопротивлении обмотки автотрансформатора относительно мало, то им практически можно пренебречь и считать справедливыми равенства U1=E1{\displaystyle U_{1}=E_{1}} и U2=E2{\displaystyle U_{2}=E_{2}},

где U1{\displaystyle U_{1}} — напряжение источника электрической энергии, поданное на всю обмотку автотрансформатора, имеющую число витков ω1{\displaystyle \omega _{1}};

U2{\displaystyle U_{2}} — напряжение, подаваемое к потребителю электрической энергии, снимаемое с той части обмотки автотрансформатора, которая обладает количеством витков ω2{\displaystyle \omega _{2}}.

Следовательно, U1U2=ω1ω2=k{\displaystyle {{U_{1}} \over {U_{2}}}={{\omega _{1}} \over {\omega _{2}}}=k}.

Напряжение U1{\displaystyle U_{1}}, приложенное со стороны источника электрической энергии ко всем виткам ω1{\displaystyle \omega _{1}} обмотки автотрансформатора, во столько раз больше напряжения U2{\displaystyle U_{2}}, снимаемого с части обмотки, обладающей числом витков ω2{\displaystyle \omega _{2}}, во сколько раз число витков ω1{\displaystyle \omega _{1}} больше числа витков ω2{\displaystyle \omega _{2}}.

Если к автотрансформатору подключен потребитель электрической энергии, то под влиянием напряжения U2{\displaystyle U_{2}} в нём возникает электрический ток, действующее значение которого обозначим как I2{\displaystyle I_{2}}.

Соответственно в первичной цепи автотрансформатора будет ток, действующее значение которого обозначим как I1{\displaystyle I_{1}}.

Однако ток в верхней части обмотки автотрансформатора, имеющей число витков (ω1−ω2){\displaystyle ({\omega _{1}}-{\omega _{2}})} будет отличаться от тока в нижней её части, имеющей количество витков ω2{\displaystyle \omega _{2}}. Это объясняется тем, что в верхней части обмотки протекает только ток I1{\displaystyle I_{1}}, а в нижней части — некоторый результирующий ток, представляющий собой разность токов I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Дело в том, что согласно

правилу Ленца индуцированное электрическое поле в обмотке автотрансформатора ω2{\displaystyle \omega _{2}} направлено навстречу электрическому полю, созданному в ней источником электрической энергии. Поэтому токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}} в нижней части обмотки автотрансформатора направлены навстречу друг другу, то есть находятся в противофазе.

Сами токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}, как и в обычном трансформаторе, связаны соотношением I1I2=ω2ω1=1k{\displaystyle {{I_{1}} \over {I_{2}}}={{\omega _{2}} \over {\omega _{1}}}={1 \over k}}

или I2=ω1ω2×I1{\displaystyle I_{2}={{\omega _{1}} \over {\omega _{2}}}\times I_{1}}.

Так как в понижающем трансформаторе ω1>ω2{\displaystyle {\omega _{1}}>{\omega _{2}}}, то I2>I1{\displaystyle {I_{2}}>{I_{1}}} и результирующий ток в нижней обмотке автотрансформатора равен I2−I1{\displaystyle {I_{2}}-{I_{1}}}.

Следовательно, в той части обмотки автотрансформатора, с которой подаётся напряжение на потребитель, ток значительно меньше тока в потребителе, то есть I2−I1≪I2{\displaystyle {I_{2}}-{I_{1}}\ll {I_{2}}}.

Это позволяет значительно снизить расход энергии в обмотке автотрансформатора на нагрев её проволоки (См. Закон Джоуля — Ленца) и применить провод меньшего сечения, то есть снизить расход цветного металла, уменьшить вес и габариты автотрансформатора.

Если автотрансформатор повышающий, то напряжение со стороны источника электрической энергии подводится к части витков обмотки трансформатора ω1{\displaystyle \omega _{1}}, а на потребитель подводится напряжение со всех его витков ω2{\displaystyle \omega _{2}}.

Автотрансформатор для питания телевизоров, СССР, 1960-е — 1970-е гг. Напряжение плавно регулировалось перемещением «ползунка» на верхней панели, контроль по показаниям вольтметра.

Автотрансформатор с регулированием напряжения. Защитный кожух снят. Сзади видна снятая верхняя панель со шкалой, деления показывают, какое напряжение будет подаваться потребителю.

Автотрансформаторы применяются в телефонных аппаратах, радиотехнических устройствах, для питания выпрямителей и т. д. Достаточно широкое применение автотрансформаторы получили в СССР: для ручной стабилизации питающего напряжения ламповый телевизор подключался к сети через ЛАТР и перед включением самого телевизора производилась ручная регулировка напряжения до номинального значения. Причиной этому было то, что в электросетях зачастую регулярно наблюдалось повышенное или пониженное напряжение, что могло повредить дорогостоящий телевизионный приёмник и даже привести к возгоранию.

В дальнейшем для этой задачи более эффективно применялись автоматические феррорезонансные стабилизаторы. В последующих моделях телевизоров (УПИМЦТ и тп), вместо пожароопасного силового трансформатора стал применяться импульсный блок питания, что сделало использование внешних стабилизаторов напряжения излишним.

Электрификация железных дорог по системе 2×25 кВ[править | править код]

В СССР (и на постсоветском пространстве) часть железных дорог электрифицирована на переменном токе 25 киловольт, частотой 50 Герц. С тяговой подстанции в контактный провод подаётся высокое напряжение[2], обратным проводом служит рельс. Однако, на малонаселённых территориях нет возможности часто располагать тяговые подстанции (к тому же трудно найти квалифицированный персонал для их обслуживания, а также создать для людей должные жилищно-бытовые условия).

Для малонаселённых территорий разработана система электрификации 2×25 кВ

(два по двадцать пять киловольт).

На опорах контактной сети (сбоку от железнодорожного полотна и контактного провода) натянут специальный питающий провод, в который подаётся напряжение 50 тыс. вольт от тяговой подстанции. На железнодорожных станциях (или на перегонах) установлены малообслуживаемые понижающие автотрансформаторы, вывод обмотки ω1{\displaystyle \omega _{1}} подключён к питающему проводу, а вывод обмотки ω2{\displaystyle \omega _{2}} — к контактному проводу. Общим (обратным) проводом является рельс. На контактный провод подаётся половинное напряжение от 50 кВ, то есть 25 кВ[3].

Данная система позволяет реже строить тяговые подстанции, а также уменьшаются тепловые потери. Электровозы и электропоезда переменного тока в переделке не нуждаются.

  1. ↑ Большая советская энциклопедия: [в 51 т.] / гл. ред. С. И. Вавилов. — 2-е. — М.: Советская энциклопедия, 1949—1958. — Т. 1. — С. 284.
  2. ↑ Как правило, подаётся несколько выше 25 киловольт, обычно 27—27,5; с учётом потерь.
  3. ↑ Как правило, подаётся несколько выше 50 киловольт, обычно 55; с учётом потерь, чтобы на контактном проводе было 27,5 кВ.

ru.wikipedia.org

Автотрансформаторы | Устройство и принцип действия

Автотрансформатор — это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.

Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.

Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.

 

Устройство автотрансформатора

 

Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.

Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» — отвод от этой обмотки, всего контактов получается, как минимум три.

Устройство автотрансформатора достаточно наглядно показано на изображении ниже:

В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A – фаза, к X – ноль. Все витки проволоки между этими точками считаются первичной обмоткой.

Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.

Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.

 

Обозначение автотрансформатора на схемах

 

Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:

Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия — это стальной сердечник, с одной стороны которого расположена единственная обмотка – в виде волнистой линии, от которой идёт несколько отводов.

Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.

Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.

 

Принцип работы автотрансформатора

 

А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.

В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:

Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X.

К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.

 

Что происходит при подаче напряжения на автотрансформатор

 

При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.

Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.

Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X, подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.

 

Зависимость между обмотками у автотрансформатора, выражается следующей формулой:

U1/w1 = U2/w2, где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.

Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.

Это доказывает нехитрый расcчет:

U1/w1 = U2/w2,

220 Вольт/18 Витков=U2/20 Витков,

U2 = 220*20/18 = 244.44В

Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.

Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.

 

Коэффициент трансформации вычисляется по следующей формуле: U1/U2=w1/w2

 

В нашем случае получается 220/244,44=18/20=0,9

 

Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.

Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.

Следуя той же формуле, рассчитываем напряжение:

U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.

Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.

Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:

Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:

— на контактах a2 и X, при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В

— на контактах a3 и X, при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В

 

ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k<1, то повышающий.

 

Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.

Логическим развитием автотрансформаторов, стало появление так называемых РЕГУЛИРУЕМЫХ АВТОТРАНСФОРМАТОРОВ, у которых нет множество дополнительных отпаек с разным коэфициентом трансформации, а количество витков вторичной обмотки, изменяется путем перемещения подвижного контакта по ней — подробнее об этом читайте ТУТ.

 

Изменение силы тока в автотрансформаторе

По силе тока есть простое правило — ток в обмотке более высокого напряжения меньше, чем ток в обмотке с более низким напряжением.

Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора – то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод – то ток на вторичной обмотке будет ниже, а напряжение выше.

Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:

I1U1 = I2U2, где I1 – ток в первичной обмотке, I2 – ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 – Напряжение во вторичной обмотке.

Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1

Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.

Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают, их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!

rozetkaonline.ru

определение, устройство, виды конструкций и обозначение на схеме

Большинство начинающих радиолюбителей да и просто тех, кто увлекается радиотехникой, интересуют вопросы о том, что такое трансформатор, как он работает и для чего служит. На самом деле все очень просто: трансформатор служит для преобразования переменного тока из одного значения с определённой частотой (параметром) в другое с идентичным параметром.

Устройство трансформатора

В соответствии с ГОСТ 16110 −82, определение трансформатора выглядит следующим образом: трансформатор — это электромагнитное устройство статистического типа, которое оснащено двумя или более обмотками, обладающими индуктивной связью, и предназначенное для преобразования одной или нескольких систем переменного тока в одну или несколько других систем.

Это электромагнитное изделие обладает простой конструкцией, состоящей из следующих элементов: магнитопровод (магнитной системы), обмотки, обмоточные каркасы, изоляция (не во всех трансформаторах), система охлаждения. дополнительные элементы. На практике производители для изготовления трансформаторов используют одну из трёх базовых концепций:

  1. Стержневая. Обмотки наматываются на крайние стержни.
  2. Броневая. Боковые стенки остаются без обмоток.
  3. Тороидальная. Обладает формой кольца с равномерной намоткой обмоток по всей окружности.

Стоит отметить, что выбор той или иной концепции не оказывает влияния на конечные параметры трансформатора и не сказывается на эксплуатационной надёжности, но, тем не менее существенно различается по технологии изготовления.

Магнитная система

Магнитопроводы для трансформатора обладают определённой геометрической формой и изготавливаются из ряда материалов, к которым относится электротехническая сталь, пермаллой, феррит или иной материал, обладающий ферромагнитными свойствами. В зависимости от материала и конструкции магнитопровод может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из двух, четырех и более «подков».

В качестве каркаса для размещения основных обмоток выступают стержни. Они могут обладать различным пространственным расположением, в зависимости от которого различают несколько видов систем.

  1. Плоская магнитная система с продольными осями стержней и ярм, расположенными в одной плоскости.
  2. Пространственная система, где продольные оси стержней располагаются в разных плоскостях.
  3. Симметричняа система, оснащённая идентичными стержнями, которые обладают одинаковым взаимным расположением по отношению к ярмам.
  4. Несимметричная система, состоящую из стержней, некоторые из которых могут отличаться по форме, конструкции и размерам, с различным взаимным расположением по отношению к ярмам.

Конструкция обмотки

Обмотка — это основной элемент трансформатора. Она представляет собой многовитковую конструкцию, изготовленную из одной или нескольких медных (реже алюминиевых) проволок различного диаметра. Как правило, в силовых трансформаторах используются проводники с квадратным сечением, которое позволяет более эффективно использовать имеющееся пространство, за счёт чего увеличивается коэффициент заполнения (К).

Для предотвращения возникновения короткого замыкания каждая обмотка изолируется. В качестве изолирующего материала может быть использована специальная бумага или эмалевый лак. Кстати, если для изготовления обмотки были использованы две отдельно изолированные и параллельно соединённые проволоки, то они могут быть оснащены общей бумажной изоляцией.

Топливный бак

Бак является одним из важнейших дополнительных элементов трансформатора. Он представляет собой ёмкость, предназначенную для хранения трансформаторного масла, а также обеспечения физической защиты активного компонента. Кроме того, корпус бака предназначен для монтажа вспомогательного оборудования и управляющего устройства.

Одним из внутренних элементов бака является сильноточный резонатор. Он подвержен быстрому и частому перегреву в моменты увеличения номинальной мощности и трансформаторных токов. Для снижения риска перегрева вокруг резонаторов устанавливают вставки из немагнитных материалов.

Внутреннее покрытие бака изготавливается из токопроводящих щитков, которые не пропускают магнитные потоки через стены ёмкости. Иногда встречается покрытие, которое изготавливается из материала, обладающего низким магнитным сопротивлением. Такой вариант покрытия поглощает внутренние потоки до подхода к стенкам бака.

Перед заменой топлива из бака выкачивают воздух с целью предотвратить снижение диэлектрической прочности изоляции трансформатора. Из этого наблюдается дополнительное предназначение бака, которое заключается в выдерживании давления атмосферы с минимальной деформацией.

Принцип работы

Трансформаторы функционируют на основании двух принципов: электромагнетизма — создания изменяющегося во времени магнитного потока под воздействием электрического тока, который также изменяется, и электромагнитной индукции — наводки ЭДС (электродвижущей силы), вследствие изменения магнитного потока, проходящего через обмотку.

Включение трансформатора происходит после подачи напряжения на первичную обмотку. Совместно с напряжением на обмотку поступает и переменный ток, участвующий в образовании переменного магнитного потока в магнитопроводе. Это создаёт ЭДС во всех обмотках устройства.

Выходное напряжение (вторичная обмотка) сложным образом связано с формой входного напряжения. Эти сложности обусловили создание линейки новых трансформаторов, которые начали использовать для решения альтернативных задач, например, усиления тока, умножения частоты и генерации сигналов.

Функциональные режимы

Трансформаторы могут функционировать в трёх режимах: холостого хода (ХХ) — 1, нагрузки — 2 и короткого замыкания — 3.

Режим 1: ХХ. Особенностью этого режима является то, что вторичная трансформаторная цепь находится в разомкнутом состоянии, поэтому по ней ток не протекает. В таком положении цепи токовый потенциал равен нулю, что создаёт в первичном контуре ток холостого хода, обладающего реактивной и активной составляющей. Эта ЭДС способна полностью компенсировать питающее напряжение. Такой режим используется для определения КПД и уровня потерь в сердечнике.

Режим 2: нагрузки. В этом режиме привычная обмотка трансформатора запитывается от стороннего источника питания, а к вторичной цепи подключается нагрузка. После подключения нагрузки по вторичной цепи начинает протекать ток, который создаёт магнитный поток, направленный в противоположную сторону от потока первичной обмотки. Это провоцирует неравенство между двумя силами — индукции и источника питания, что увеличивает ток, который протекает по первичной обмотке до момента возращения магнитного потока в первоначальное значение. Этот режим является основным рабочим режимом для трансформаторов.

Режим 3: КЗ. Для получения этого режима вторичный контур трансформатора замыкается накоротко, а к первичной обмотке подводится низкое переменное напряжение. Значение входного напряжения выбирают таким, чтобы ток КЗ получился равным номинальному. Такой режим используют для определения потерь на нагрев обмоток в цепи трансформатора.

Виды изделий

С 30 ноября 1876 года, считающегося датой создания первого трансформатора, прошло уже достаточно много времени. За этот период устройства были значительно изменены как в конструктивном плане, так и по характеристикам. На сегодняшний день существуют следующие виды трансформаторов:

  • Силовой трансформатор переменного тока. Такие трансформаторы применяются в сетях энергоснабжения и электроустановках, которые предназначены для приёма и использования электроэнергии. Эти трансформаторы используются из того, что по всей длине трассы присутствуют различные рабочие напряжения, например, на ЛЭП (линии электропередачи) оно может варьироваться от 0,035 до 0,75 МВ (мегавольт), а в трансформаторных подстанциях равняется 400 В, которые впоследствии преобразуются в привычные 220/380 В.
  • Автотрансформатор. Вариант трансформатора с прямым соединением первичной и вторичной обмотки, которое создаёт не только электромагнитную, но и электрическую индукцию. Автотрансформаторы оснащаются многовыводными обмотками, чьё минимальное количество равняется трём. Они используются в качестве элемента, соединяющего эффективно заземлённые сети напряжением от 0,11 МВ с коэффициентом трансформации от 3 до 4. Автотрансформаторы обладают двумя ключевыми преимуществами и одним небольшим недостатком. К первым относятся экономичность (из-за снижения расходов на покупку меди для обмоток и стали для сердечника) и высокий КПД — из-за частичного преобразования входной мощности. Недостаток — это отсутствие гальванической развязки — электрической изоляции между первичной и вторичной цепью.
  • Трансформатор тока. Устройство с первичной обмоткой, запитывающейся от стороннего источника тока, при этом вторичную цепь стараются изготовить таким образом, чтобы она работала в режиме близком к короткому замыканию. Подключение первичной обмотки производится последовательно к цепи с нагрузкой. В этой цепи протекает переменный ток, который нужно контролировать. Для приближения к режиму КЗ к вторичной цепи подключают вольтметры или индикаторы, например, реле или светодиод. Наличие дополнительных элементов во вторичной цепи обусловило одну из областей применения подобных трансформаторов, заключающуюся в снижении токов первичной обмотки до значений, которые могут использоваться в целях измерения, защиты, управления и сигнализации.
  • Сварочный трансформатор. Устанавливается в сварочных аппаратах и используется для преобразования сетевого напряжения 220/380 вольт в более низкие значения, а также для повышения уровня тока. Ток можно регулировать изменением индуктивного сопротивления или вторичного напряжения ХХ. Это выполняется секционированием числа витков первичной или второй обмотки соответственно.
  • Разделительный трансформатор. Отличается от остальных устройств подобного типа отсутствием электрической связи между первичной и вторичной обмотками. Разделительные устройства применяются в электросетях с целью обеспечения безопасности людей при обрыве линий или других чрезвычайных происшествиях, которые могут нанести вред, а также с целью обеспечения гальванической развязки.

Обозначение на схемах

Трансформатор на схеме обозначается следующим образом: по центру чертится толстая линия, которая отображает сердечник, слева от неё в вертикальной плоскости изображается катушка (витками к сердечнику) — первичная обмотка, а справа ещё одна или несколько катушек — вторичные обмотки.

В общем случае схематическое отображение линии, обозначающей сердечник, должно соответствовать толщине витков изображённых катушек. При необходимости подчёркивания материала или особенностей конструкции сердечника на схеме немного видоизменяют центральную линию. Так, классический ферритовый сердечник обозначают сплошной жирной линией, а сердечник, обладающий магнитным зазором, — тонкой линией с разрывом посередине. Магнитодиэлектрические сердечники отображаются тонкой пунктирной линией.

220v.guru

Регулируемый автотрансформатор


Устройство регулируемых автотрансформаторов

 

В первую очередь давайте вспомним, что из себя представляет стандартный автотрансформатор и как он устроен — обязательно читайте по ссылке нашу подробную статью об этом.

Из неё вы, в частности, узнаете, что автотрансформатор имеет одну общую обмотку, часть которой является первичной, к ней подключается электрический ток питающей сети, а другая часть — вторичной, к ней подключается нагрузка — какой-нибудь электроприбор.

При этом отводов от основной обмотки может быть несколько, все они с определенным шагом изменяют входящее напряжение, какие-то повышают, а какие-то понижают. Схема стандартного автотрансформатора представлена ниже:



В нашем примере, у автотрансформатора имеется два дополнительных отвода от обмотки а2 и а3, с коэффициентами трансформации k1 = 1,125 и k2 = 0,9.

Таким образом, если мы подаём на первичную обмотку переменный ток напряжением 220В, на первом отводе получаем 220/0,9 = 244,4 В, а на втором 220/1,125 = 195,55 В. (Входящее напряжение именно делится на коэффициент трансформации, для получения величины выходного напряжения у автотрансформатора, т.к. формула для определения коэффициента следующая: k=U1/U2, где k – коэффициент трансформации, U1 – входящее напряжение, U2 – получаемое напряжение на отпайках.)

Чаще всего, автотрансформаторы имеют по несколько дополнительных отпаек, которые и формируют вторичные обмотки, несколько ступеней регулирования входящего напряжения и, соответственно, остальных параметров электрического тока.

Главным недостатком такой конструкции автотрансформатора является то, что изменять входящее напряжение можно лишь кратно коэффициентам трансформации существующих отводов от обмотки, а сделать много сложно и не практично, поэтому напряжение может регулироваться лишь ступенчато, с определенным шагом.

Здесь нам и приходит на помощь регулируемый автотрансформатор, он устроен так, что позволяет плавно и достаточно точно изменять входящее напряжение, получая на выходе требуемые величины.

На изображении ниже вы можете видеть устройство стандартного регулируемого автотрансформатора:


Регулируемый автотрансформатор, как и обычный, представляет собой магнитный сердечник с обмоткой из медной проволоки, к которой в точках А1 и Х подключается входящий переменный электрический ток, например, стандартной бытовой электросети 220В.

На этом сходство с обычным автотрансформатором заканчивается, ведь вместо нескольких отводов с разным коэффициентом трансформации, здесь есть всего один контакт, подключенный к подвижному механизму, который может перемещаться по обмотке.

При этом, с части обмотки снят изоляционный слой, в этом месте с ней и контактирует угольная щетка или ролик этого механизма, таким образом создаётся электрическая связь с требуемой частью обмотки.   


Принцип действия регулируемого автотрансформатора


Как вы, наверное, уже догадались, нагрузка, какой-нибудь электроприбор, подключается к выводу от этого подвижного контакта а2 и к общей точке обмотки Х. Получается, что, перемещая ролик, мы изменяем количество витков вторичной обмотки автотрансформатора, и таким образом имеем возможность плавно регулировать получаемое на выходе напряжение.



Регулируемый автотрансформатор позволяет как повысить электрические показатели в определенных пределах, в частности напряжение, так и понизить их.


Регулируемый автотрансформатор на схеме


На электрических схемах, регулируемый автотрансформатор чаще всего изображается следующим образом:



— В виде прямой черты показан магнитопровод — сердечник, волнистая линия сбоку от него это общая обмотка

— Показаны стационарные отводы для подключения входящего источника питания — точки А1 и Х

— Стрелкой обозначен перемещаемый, подвижный контакт, формирующий вторичную обмотку, в зависимости от своего местоположения — точки а2 и Х


Виды регулируемых автотрансформаторов

 

 Регулируемые автотрансформаторы бывают:


— однофазными и трехфазными.



Конструктивно трехфазный регулируемый автотрансформатор представляет собой три однофазных в одном корпусе.

По типу привода, который перемещает подвижный контакт по обмотке, они делятся на модели:

с механической — ручной и автоматической — с помощью сервопривода, регулировкой выходного напряжения.



Здесь все просто, в автоматических автотрансформаторах положение подвижного контакта изменяет электромотор – сервопривод. Часто такое решение применяется при устройстве стабилизаторов напряжения, когда от автотрансформатора требуется автоматическое, достаточно точное реагирование на изменение параметров входящего электрического тока.

В механических регулируемых автотрансформаторах, перемещение подвижного контакта по обмотке осуществляется вручную, ярким представителем такой конструкции является ЛАТР – Лабораторный Автотрансформатор Регулируемый.  

Наибольшее распространение ЛАТР, как вы, наверное, уже догадались из названия, получили в различной лабораторной деятельности, при проверке, ремонте, модификации электрооборудования, приборов и их элементов.

Нередко именно ЛАТР устанавливают в приборах, где есть нагревательные элементы, например, ТЭНы, изменяя с помощью ЛАТР параметры электрического тока, питающего их, можно регулировать температуру нагрева.

Главное отличие регулируемого автотрансформатора, от нерегулируемого – механизм передвижения контакта, является как основным преимуществом – позволяя плавно регулировать параметры электрического тока, так и главным недостатком. Как и любой другой подвижный элемент, он требует периодического обслуживания и может сломаться, угольная щетка или ролик может стереться и электрический контакт ослабнет или совсем пропадёт.

Но, несмотря на это, в настоящее время, регулируемые трансформаторы довольно широко распространены, и вы обязательно их встретите в недорогих, но достаточно надежных стабилизаторах напряжениях, в мастерских и различных лабораториях.

А если в статье вы не нашли ответов на свои вопросы о регулируемых автотрансформаторах – не стесняйтесь, пишите в комментариях, я обязательно постараюсь оперативно вам ответить. Кроме того, как обычно приветствуются любые мнения, дополнения, здоровая критика, всё то, что поможет сделать материал более информативным и полезным всем.

rozetkaonline.ru

Особенности конструкции и режимы работы автотрансформаторов



В установках 110 кВ и выше широкое применение находят автотрансформаторы большой мощности. Объясняется это рядом преимуществ, которые они имеют по сравнению с трансформаторами.

Рис.1. Схема однофазного автотрансформатора

Однофазный автотрансформатор имеет электрически связанные обмотки ОВ и ОС (рис.1). Часть обмотки, заключенная между выводами В и С, называется последовательной, а между С и О — общей.

При работе автотрансформатора в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который, создавая магнитный поток, наводит в общей обмотке ток Io. Ток нагрузки вторичной обмотки Ic складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока Io, созданного магнитной связью этих обмоток: Ic=Iв+Io, откуда Io=Ic-Iв.

Полная мощность, передаваемая автотрансформатором из первичной сети во вторичную, называется проходной.

Если пренебречь потерями в сопротивлениях обмоток автотрансформатора. можно записать следующее выражение:

Преобразуя правую часть выражения, получаем:

(3)

где (Uв — Uc)Iв=Sт — трансформаторная мощность, передаваемая магнитным путем из первичной обмотки во вторичную; UcIв=Sэ — электрическая мощность, передаваемая из первичной обмотки во вторичную за счет их гальванической связи, без трансформации.

Эта мощность не нагружает общей обмотки, потому что ток Iв из последовательной обмотки проходит на вывод С, минуя обмотку ОС.

В номинальном режиме проходная мощность является номинальной мощностью автотрансформатора S=Sном, а трансформаторная мощность — типовой мощностью Sт=Sтип.

Размеры магнитопровода, а следовательно, его масса определяются трансформаторной (типовой) мощностью, которая составляет лишь часть номинальной мощности:

(4)

где nBC = UBUC — коэффициент трансформации; kвыг коэффициент выгодности или коэффициент типовой мощности.

Из (4) следует, что чем ближе UB к UC, тем меньше kвыг и меньшую долю номинальной составляет типовая мощность. Это означает, что размеры автотрансформатора, его масса, расход активных материалов уменьшаются по сравнению с трансформатором одинаковой номинальной мощности.

Например, при UB=330кВ, UC=110кВ, kвыг=0,667, а при UB=550кВ, UC=330кВ, kвыг=0,34.

Наиболее целесообразно применение автотрансформаторов при сочетании напряжений 220/110; 330/150; 500/220; 750/330.

Из схемы (рис.1) видно, что мощность последовательной обмотки

Sп=(UB-UC)IB=Sтип;

мощность общей обмотки

Таким образом, еще раз можно подчеркнуть, что обмотки и магнитопровод автотрансформатора рассчитываются на типовую мощность, которую иногда называют расчетной мощностью. Какая бы мощность ни подводилась к зажимам В или С, последовательную и общую обмотки загружать больше чем на Sтип нельзя. Этот вывод особенно важен при рассмотрении комбинированных режимов работы автотрансформатора. Такие режимы возникают, если имеется третья обмотка, связанная с автотрансформаторными обмотками только магнитным путем.

Третья обмотка автотрансформатора (обмотка НН) используется для питания нагрузки, для присоединения источников активной или реактивной мощности (генераторов и синхронных компенсаторов), а в некоторых случаях служит лишь для компенсации токов третьих гармоник. Мощность обмотки НН SН не может быть больше Sтип, так как иначе размеры автотрансформатора будут определяться мощностью этой обмотки. Номинальная мощность обмотки НН указывается в паспортных данных автотрансформатора.

Рассмотрим режимы работы трехобмоточных автотрансформаторов с обмотками ВН, СН и НН (рис.2).

Рис.2. Распределение токов в обмотках автотрансформатора в различных режимах
а,б — автотрансформаторные режимы,
в,г — трансформаторные режимы,
д,е — комбинированные режимы

В автотрансформаторных режимах (рис.2,а,б) возможна передача номинальной мощности Sном из обмотки ВН в обмотку СН или наоборот. В обоих режимах в общей обмотке проходит разность токов IС-IВ=kтипIC, а поэтому последовательная и общая обмотки загружены типовой мощностью, что допустимо.

В трансформаторных режимах (рис.2,в,г) возможна передача мощности из обмотки НН в обмотку СН или ВН, причем обмотку НН можно загрузить не более чем на Sтип. Условие допустимости режима НН→ВН или НН→СН:

(5)

Если происходит трансформация Sтип из НН в СН, то общая обмотка загружена такой же мощностью и дополнительная передача мощности из ВН в СН невозможна, хотя последовательная обмотка не загружена.

В трансформаторном режиме передачи мощности Sтип из обмотки НН в ВН (рис.2,г) общая и последовательная обмотки загружены не полностью:

поэтому возможно дополнительно передать из обмотки СН в ВН некоторую мощность (см. пояснения к рис.2,е).

В комбинированном режиме передачи мощности автотрансформаторным путем ВН→СН и трансформаторным путем НН→СН (рис.2,д) ток в последовательной обмотке.

где РB QB — активная и реактивная мощности, передаваемые из ВН в СН.

Нагрузка последовательной обмотки

Отсюда видно, что даже при передаче номинальной мощности SB=Sном последовательная обмотка не будет перегружена.

В общей обмотке токи автотрансформаторного и трансформаторного режимов направлены одинаково:

Io=Io(a)+I(т).

Нагрузка общей обмотки

So=UC(Io(a)+I(т)).

Подставляя значения токов и производя преобразования, получаем:

(6)

где РH, QH — активная и реактивная мощности, передаваемые из обмотки НН в обмотку СН.

Таким образом, комбинированный режим НН→СН, ВН→СН ограничивается загрузкой общей обмотки и может быть допущен при условии

(7)

Если значения cosφ на стороне ВН и НН незначительно отличаются друг от друга, то кажущиеся мощности можно складывать алгебраически и (6) упрощается

(8)

В комбинированном режиме передачи мощности из обмоток НН и СН в обмотку ВН распределение токов показано на рис.2,е. В общей обмотке ток автотрансформаторного режима направлен встречно току трансформаторного режима, поэтому загрузка обмотки значительно меньше допустимой и в пределе может быть равна нулю. В последовательной обмотке токи складываются, что может вызвать ее перегрузку. Этот режим ограничивается загрузкой последовательной обмотки

(9)

где Рс, Qс — активная и реактивная мощности на стороне СН; Рн, Qн — то же на стороне НН.

Комбинированный режим НН→ВН, СН→ВН допустим, если

(10)

Если значения cosφ на стороне СН и НН незначительно отличаются друг от друга, то (9) упрощается

(11)

Возможны и другие комбинированные режимы: передача мощности из обмотки СН в обмотки НН и ВН или работа в понижающем режиме при передаче мощности из обмотки ВН в обмотки СН и НН. В этих случаях направления токов в обмотках изменяются на обратные по сравнению с рис.2,д,е, но приведенные рассуждения и расчетные формулы (6)-(11) останутся неизменными.

Рис.3. Схема включения трансформаторов тока
для контроля нагрузки автотрансформатора

Во всех случаях надо контролировать загрузку обмоток автотрансформатора. Ток в последовательной обмотке может контролироваться трансформатором тока ТА1, так как Iп=IB (рис.3). Трансформатор тока ТА2 контролирует ток на выводе обмотки СН, а для контроля тока в общей обмотке необходим трансформатор тока ТАО, встроенный непосредственно в эту обмотку. Допустимая нагрузка общей обмотки указывается в паспортных данных автотрансформатора.

Рис.4. Схема трехфазного трехобмоточного автотрансформатора

Выводы, сделанные для однофазного трансформатора [формулы (4)-(11)], справедливы и для трехфазного трансформатора, схема которого показана на рис.4. Обмотки ВН и СН соединяются в звезду с выведенной нулевой точкой, обмотки НН — в треугольник.

К особенностям конструкции автотрансформаторов следует отнести необходимость глухого заземления нейтрали, общей для обмоток ВН и СН. Объясняется это следующим. Если в системе с эффективно-заземленной нейтралью включить понижающий автотрансформатор с незаземленной нейтралью, то при замыкании на землю одной фазы в сети СН на последовательную обмотку этой фазы будет воздействовать полное напряжение UB/√З вместо (UB-UC)√3, напряжение выводов обмотки СН возрастет примерно до UB, резко увеличится напряжение, приложенное к обмоткам неповрежденных фаз. Аналогичная картина наблюдается в случае присоединения повышающего автотрансформатора с незаземленной нейтралью к системе с эффективно-заземленной нейтралью.

Такие перенапряжения недопустимы, поэтому нейтрали всех автотрансформаторов глухо заземляются. В этом случае заземления на линии со стороны ВН или СН не вызывают опасных перенапряжений, однако в системах ВН и СН возрастают токи однофазного КЗ.

Подводя итог всему сказанному, можно отметить следующие преимущества автотрансформаторов по сравнению с трансформаторами той же мощности:

  • меньший расход меди, стали, изоляционных материалов;
  • меньшая масса, а следовательно, меньшие габариты, что позволяет создавать автотрансформаторы больших номинальных мощностей, чем трансформаторы;
  • меньшие потери и больший КПД; более легкие условия охлаждения.

Недостатки автотрансформаторов:

  • необходимость глухого заземления нейтрали, что приводит к увеличению токов однофазного КЗ;
  • сложность регулирования напряжения;
  • опасность перехода атмосферных перенапряжений вследствие электрической связи обмоток ВН и СН.


www.gigavat.com

0 comments on “Автотрансформатор на схемах изображают следующим образом – Справочник электрика: Обозначение трансформаторов, автотрансформаторов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *