Ja pa8 схема – Схемы блоков питания для ноутбуков. Cборка № 5

Схемы блоков питания и не только.

Утилиты и справочники.

cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

Transistors.rar — База данных по транзисторам в формате Access.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Конт Обозн   Цвет Описание
1 3.3V   Оранжевый +3.3 VDC
2 3.3V   Оранжевый +3.3 VDC
3 COM  
Черный
Земля
4 5V   Красный +5 VDC
5 COM   Черный Земля
6 5V   Красный +5 VDC
7 COM   Черный Земля
8 PWR_OK   Серый Power Ok — Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы.
9 5VSB   Фиолетовый +5 VDC Дежурное напряжение
10 12V   Желтый +12 VDC
11 12V   Желтый +12 VDC
12 3.3V   Оранжевый +3.3 VDC
13 3.3V
 
Оранжевый +3.3 VDC
14 -12V   Синий -12 VDC
15 COM   Черный Земля
16 /PS_ON   Зеленый Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета).
17 COM   Черный Земля
18 COM   Черный Земля
19 COM   Черный Земля
20 -5V   Белый -5 VDC  (это напряжение используется очень редко, в основном, для питания старых плат расширения.)
21 +5V   Красный +5 VDC
22 +5V  
Красный
+5 VDC
23 +5V   Красный +5 VDC
24 COM   Черный Земля

typical-450.gif — типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.

ATX 300w .png — типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.

ATX-450P-DNSS.zip — Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.

AcBel_400w.zip — Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.

Alim ATX 250W (.png) — Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.

atx-300p4-pfc.png — Схема блока питания ATX-300P4-PFC ( ATX-310T 2.03 ).

ATX-P6.gif — Схема блока питания ATX-P6.

ATXPower.rar — Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

GPS-350EB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350EB-101A.

GPS-350FB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350FB-101A.

ctg-350-500.png — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

ctg-350-500.pdf — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

cft-370_430_460.pdf — Схема блоков питания Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S

gpa-400.png — Схема блоков питания Chieftec 400W iArena GPA-400S8

GPS-500AB-A.pdf — Схема БП Chieftec 500W GPS-500AB-A.

GPA500S.pdf — Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.

cft500-cft560-cft620.pdf — Схема блоков питания Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S

aps-550s.png — Схема блоков питания Chieftec 550W APS-550S

gps-650_cft-650.pdf — Схема блоков питания Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B

ctb-650.pdf — Схема блоков питания Chieftec 650W CTB-650S

ctb-650_no720.pdf — Схема блоков питания Chieftec 650W CTB-650S Маркировка платы: NO-720A REV-A1

aps-750.pdf — Схема блоков питания Chieftec 750W APS-750C

ctg-750.pdf — Схема блоков питания Chieftec 750W CTG-750C

cft-600_850.pdf — Схема блоков питания Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS

cft-850g.pdf — Схема блока питания Chieftec 850W CFT-850G-DF

cft-1000_cft-1200.pdf — Схема блоков питания Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF

colors_it_330u_sg6105.gif — Схема БП NUITEK (COLORS iT) 330U (sg6105).

330U (.png) — Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .

350U.pdf — Схема БП NUITEK (COLORS iT) 350U SCH .

350T.pdf — Схема БП NUITEK (COLORS iT) 350T .

400U.pdf — Схема БП NUITEK (COLORS iT) 400U .

500T.pdf — Схема БП NUITEK (COLORS iT) 500T .

600T.pdf — Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT — 600T — PSU, 720W, SILENT, ATX)

codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif — Схема БП Codegen 300w mod. 300X.

PUh500W.pdf — Схема БП CWT Model PUh500W .

Dell-145W-SA145-3436.png — Схема блока питания Dell 145W SA145-3436

Dell-160W-PS-5161-7DS.pdf — Схема блока питания Dell 160W PS-5161-7DS

Dell_PS-5231-2DS-LF.pdf — Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)

Dell_PS-5251-2DFS.pdf — Схема блока питания Dell 250W PS-5251-2DFS

Dell_PS-5281-5DF-LF.pdf — Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01

Dell_PS-6311-2DF2-LF.pdf — Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00

Dell_L350P-00.pdf — Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00

Dell_L350P-00_Parts_List.pdf — Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00

deltadps260.ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.

delta-450AA-101A.pdf — Схема блока питания Delta 450W GPS-450AA-101A

delta500w.zip — Схема блока питания Delta DPS-470 AB A 500W

DTK-PTP-1358.pdf — Схема блока питания DTK PTP-1358.

DTK-PTP-1503.pdf — Схема блока питания DTK PTP-1503 150W

DTK-PTP-1508.pdf — Схема блока питания DTK PTP-1508 150W

DTK-PTP-1568.pdf — Схема БП DTK PTP-1568 .

DTK-PTP-2001.pdf — Схема БП DTK PTP-2001 200W.

DTK-PTP-2005.pdf — Схема БП DTK PTP-2005 200W.

DTK PTP-2007 .png — Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

DTK-PTP-2007.pdf — Схема БП DTK PTP-2007 200W.

DTK-PTP-2008.pdf — Схема БП DTK PTP-2008 200W.

DTK-PTP-2028.pdf — Схема БП DTK PTP-2028 230W.

DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.

DTK-PTP-2068.pdf — Схема блока питания DTK PTP-2068 200W

DTK-PTP-3518.pdf — Схема БП DTK Computer model 3518 200W.

DTK-PTP-3018.pdf — Схема БП DTK DTK PTP-3018 230W.

DTK-PTP-2538.pdf — Схема блока питания DTK PTP-2538 250W

DTK-PTP-2518.pdf — Схема блока питания DTK PTP-2518 250W

DTK-PTP-2508.pdf — Схема блока питания DTK PTP-2508 250W

DTK-PTP-2505.pdf — Схема блока питания DTK PTP-2505 250W

EC mod 200x (.png) — Схема БП EC model 200X.

FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.

fsp_atx-300gtf_dezhurka.gif — Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

fsp_600_epsilon_fx600gln_dezhurka.png — Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.zip — Схемы блока питания HIPER HPU-4K580 . В архиве — файл в формате SPL (для программы sPlan) и 3 файла в формате GIF — упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif — они одинаковые.

iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif — Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше — выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) ) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ — возможно, это повысит надежность работы дежурки.

IP-P550DJ2-0.pdf — схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).

JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF — Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

L & C A250ATX (.png) — Схемы блока питания L & C Technology Co. модель LC-A250ATX

LiteOn_PE-5161-1.pdf — Схема блоков питания LiteOn PE-5161-1 135W.

LiteOn-PA-1201-1.pdf — Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VW.pdf — Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR1.pdf — Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR.pdf — Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)

LWT2005 (.png) — Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

M-tech SG6105 (.png) — Схема БП M-tech KOB AP4450XA.

Macrom Power ATX 9912 .png — Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Maxpower 230W (.png) — Схема БП Maxpower PX-300W

MaxpowerPX-300W.GIF — Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03

PowerLink LP-J2-18 (.png) — Схемы блока питания PowerLink модель LP-J2-18 300W.

Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

microlab350w.pdf — Схема БП Microlab 350W

microlab_400w.pdf — Схема БП Microlab 400W

linkworld_LPJ2-18.GIF — Схема БП Powerlink LPJ2-18 300W

Linkword_LPK_LPQ.gif — Схема БП Powerlink LPK, LPQ

PE-050187 — Схема БП Power Efficiency Electronic Co LTD модель PE-050187

ATX-230.pdf — Схема БП Rolsen ATX-230

SevenTeam_ST-200HRK.gif — Схема БП SevenTeam ST-200HRK

SevenTeam_ST-230WHF (.png) — Схема БП SevenTeam ST-230WHF 230Watt

SevenTeam ATX2 V2 на TL494 (.png) — Схема БП SevenTeam ATX2 V2

hpc-360-302.zip — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате .PDF

hpc-420-302.pdf — Схема блока питания Sirtec HighPower HPC-420-302 420W

HP-500-G14C.pdf — Схема БП Sirtec HighPower HP-500-G14C 500W

cft-850g-df_141.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.

SHIDO_ATX-250.gif — Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png — Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

s_atx06f.png — Схема блока питания Utiek ATX12V-13 600T

Wintech 235w (.png) — Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03

Схемы блоков питания для ноутбуков.

EWAD70W_LD7552.png — Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.

KM60-8M_UC3843.png — Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.

ADP-36EH_DAP6A_DAS001.png — Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.

LSE0202A2090_L6561_NCP1203_TSM101.png — Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.

ADP-30JH_DAP018B_TL431.png — Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.

ADP-40PH_2PIN.jpg — Схема блока питания Delta ADP-40PH ABW

Delta-ADP-40MH-BDA-OUT-20V-2A.pdf — Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.

PPP009H-DC359A_3842_358_431.png — Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.

NB-90B19-AAA.jpg — Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.

PA-1121-04.jpg — Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.

Delta_ADP-40MH_BDA.jpg — Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.

LiteOn_LTA301P_Acer.jpg — Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.

ADP-90SB_BB_230512_v3.jpg — Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A

Delta-ADP-90FB-EK-rev.01.pdf — Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.

PA-1211-1.pdf — Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.

Li-Shin-LSE0202A2090.pdf — Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.

GEMBIRD-model-NPA-AC1.pdf — Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.

ADP-60DP-19V-3.16A.pdf — Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.

Delta-ADP-40PH-BB-19V-2.1A.jpg — Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.

Asus_SADP-65KB_B.jpg — Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).

Asus_PA-1900-36_19V_4.74A.jpg — Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.

Asus_ADP-90CD_DB.jpg — Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.

PA-1211-1.pdf — Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).

LiteOn-PA-1900-05.pdf — Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.

LiteOn-PA-1121-04.pdf — Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.

Прочее оборудование.

monpsu1.gif — типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.

sch_A10x.pdf — Схема планшетного компьютера («планшетника») Acer Iconia Tab A100 (A101).

HDD SAMSUNG.rar — архив с обширной подборкой документации к HDD Samsung

HDD SAMSUNG M40S — документация к HDD Samsung серии M40S на английскомязыке.

sonyps3.jpg — схема блока питания к Sony Playstation 3.

APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf — инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.

Silcon_DP300E.zip — эксплуатационная документация на UPS Silcon DP300E производства компании APC

symmetra-re.pdf — руководство по эксплуатации UPS Symmetra RM компании APC.

symmetrar.pdf — общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).

manuals_symmetra80.pdf — эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.

APC-Symmetra.zip — архив с эксплуатационной документацией на Symmetra Power Array компании APC

Smart Power Pro 2000.pdf — схема ИБП Smart Power Pro 2000.

BNT-400A500A600A.pdf — Схема UPS Powercom BNT-400A/500A/600A.

ml-1630.zip — Документация к принтеру Samsung ML-1630

splitter.arj — 2 принципиальные схемы ADSL — сплиттеров.

KS3A.djvu — Документация и схемы для 29″ телевизоров на шасси KS3A.

Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»

В начало страницы &nbsp &nbsp | &nbsp &nbsp На главную страницу

ab57.ru

Ремонт зарядных устройств (блоков питания) ноутбуков

Фактически, узел питания и зарядное устройство ноутбука состоит из двух частей, — узла аккумуляторного питания (в нем же и система контроля зарядки) и внешнего зарядного устройства, которое обычно представляет собой импульсный блок питания с выходным напряжением 19V. Именно о этой, внешней, части и пойдет речь в данной статье. Пример схемы блока питания для ноутбуков фирмы Acer с выходным напряжением 19V при максимальном токе 3.5А показан на рисунке. Следует заметить что блоки питания и для других ноутбуков построены по аналогичной схеме, поэтому материалом изложенным в этой статье можно пользоваться при ремонте блоков питания для самых разных ноутбуков, и вообще импульсных блоков питания. И так, источник питания выполнен по импульсной схеме и базируется на основе микросхемы TOP258EN (U1) фирмы Power Integrations. Данная микросхема обладает встроенным контроллером и силовым MOSFET ключом, которым управляет, путем изменения широты импульсов, поступающих на его затвор, основываясь на сигнале обратной связи.

Сетевое напряжение поступает через предохранитель F1 и экстратоковую защиту на силовом терморезисторе RT1 на входной дроссель L1, подавляющий помехи. Далее следует мостовой выпрямитель на диодах D1-D4. При нормальной работе на конденсаторе С4 выделяется постоянное напряжение около 305V. Этим напряжением питается импульсный генератор на основе микросхемы U1 и импульсного трансформатора Т1.

Резисторы R3 и R4 создают пусковое напряжение питания микросхемы U1, необходимое для первичного запуска её генератора в момент включения питания. Генератор запускается, и дает первые импульсы на затвор ключевого транзистора микросхемы. На выводе D U1 возникают мощные импульсы тока, который протекает через первичную обмотку трансформатора Т1. Это приводит к наведению во вторичных обмотках напряжения. Обмотка Т1 4-5 служит для рабочего питания микросхемы, на которое микросхема переходит после удачного запуска блока. Выпрямитель состоит из диода D6 и конденсатора С10. Если запуск прошел нормально, что стабилитрон VR2 открывается и через него на контроллер U1 поступает питание. Теперь контроллер с режима запуска переходит на рабочий режим.

Для слежения за состоянием схемы у контроллера микросхемы U1 есть два входа — С и X. Вход X служит для контроля за величиной сетевого напряжения. Датчиком величины сетевого напряжения является делитель на резисторах R1, R2 и R9. Величина сетевого напряжения оценивается по величине напряжения на резисторе R9. Вход С служит для слежения за состоянием выхода. Между ним и выпрямителем на диоде D6 включен фототранзистор оптопары U2, а светодиод её подключен к вторичной цепи (к выходу выпрямителя на диодах D7, D8 и конденсаторе С 13 через ИМС U3, контролирующей состояние выхода).

Вот вкратце, описание работы блока питания. Теперь переходим к «типовым» неполадкам.

1. Блок не работает, в сеть включаем, а на выходе напряжения нет, никаких звуков, никакого стрекотания тоже нет. Самая распространенная неисправность. Здесь может быть неисправность как на входе, так и на выходе (о банальном обрыве в сетевом шнуре или выходном шнуре говорить не будем), так и в самом импульсом генераторе.

Итак, если блок питания не работает, а предохранитель F1 цел, то лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя.

Это напряжение должно составлять около +305 V (во всяком случае в пределах 280-310V), при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже вышеуказанного значения или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций при пониженном напряжении указывает на неисправность конденсатора С4 либо на обрыв диодного выпрямителя на диодах D 1-D4.

Полное отсутствие напряжения на С4 говорит о обрыве в цепи от сетевой вилки до С4. Очень возможно сгорел RT1 или диоды моста, дроссель L1. Но если предохранитель все же цел, то неисправность может быть в банальном дефекте пайки (расшатан какой-то вывод в этой цепи, поврежден коррозией), трещине в печатной дорожке. Отключите от сети и найдите неисправность путем прозвонки цепей.

При перегорании предохранителя повторное включение имеет смысл проводить подключая источник питания к сети через лампу накаливания на 220V мощностью не менее 100W. Это позволит обезопасить другие части схемы, которые «спас» предохранитель. Например, при КЗ в С4 при повторном включении в сеть предохранитель может не успеть сработать, что приведет к повреждению диодов выпрямителя, обмоток дросселя и др.

А лампа накаливания ограничит ток К.З.

Перегорание предохранителя (или пробой диодов выпрямителя, резистора RT1) скорее всего связано пробоем (междуобкладочным замыканием) конденсатора С 4. Дополнительным признаком пробоя конденсатора может быть изменение формы его корпуса (выбухание донной части, разрыв её). Реже это связано с пробоем транзистора микросхемы U1.

Следует знать, что пробой мощного переключательного транзистора микросхемы не обязательно бывает самопроизвольным, а часто вызывается неисправностью какого-либо другого элемента. В частности, в рассматриваемой схеме это может быть обрыв одного из элементов демпфирующей цепи D5, R6, С6, VR1, R7, а так же наличие короткозамкнутых витков в первичной обмотке трансформатора Т1.

Поэтому перед заменой микросхемы   в случае пробоя выходного транзистора желательно проанализировать возможные причины его выхода из строя и провести необходимые проверки, иначе для устранения неисправности придется запастись большим количеством дорогостоящих, мощных транзисторов.

Кроме того может быть и междуобкладочное замыкание СЗ. Но при этом перегорает только предохранитель.

Если напряжение +305V есть на С4 это говорит что цепи первичного выпрямителя исправны и неработоспособность блока питания может быть связана с неисправностью в генераторе на ИМС U1 и трансформаторе Т1.

Блок питания может просто не запускаться при включении из-за обрыва в резисторах R3-R4. В этом случае при включении в сеть питание на генератор ИМС U1 не поступает, и он не работает. Другой случай — обрыв в выходном ключе микросхемы.

Наиболее редкий случай — обрыв обмоток трансформатора, в частности первичной обмотки. В этом случае блок питания вообще не работает. Определить это можно измерив постоянное напряжение на выводе D микросхемы U1 Если на нем напряжения 305V нет, а на С4 (конденсаторе фильтра сетевого выпрямителя) есть, то, скорее всего, оборвана первичная обмотка импульсного трансформатора (в данной схеме обмотка 1—3 трансформатора Т1).

Хотя не следует исключать и обрыв в печатных дорожках или некачественных пайках. Перед принятием решения о замене трансформатора необходимо выяснить, не было ли причиной этого обрыва короткое замыкание в цепи первичной обмотки, например, пробой выходного транзистора U1 (не должно звониться в обоих направлениях между выводами D и S U1).

Возможно аварийное состояние блока из-за короткого замыкания во вторичной цепи. Либо ошибочного состояния системы контроля вторичной цепи из-за повреждения U3 или в элементах её «обвязки». Замыкание во вторичной цепи чаще всего возникает из-за пробоя одного из электролитических конденсаторов.

Пульсация источника питания (кратковременный запуск при включении в сеть, без перехода на рабочий режим) может быть вызвана неисправностью в цепи выпрямителя на D 6, С 10, а так же стабилитрона VR2.

Автор: Андреев С.

Возможно, вам это будет интересно:

meandr.org

Принципиальные электрические схемы по ноутбукам HP.

Схемы к ноутбукам HP 2000 2D62SR (Inventec HARVEY 14 MB-A02)

Схемы к ноутбукам HP 255 G3 (Compal LA-A993P ZS051)

Схемы к ноутбукам HP Pavilion 15 17 (Quanta R75 R7X AMD rev.1a)

Схемы к ноутбукам HP Probook 6550B (Inventec Diesel 10 UMA)

Схемы к ноутбукам HP 630, Compaq CQ43, CQ47 (Foxconn Chicago)

Схемы к ноутбукам HP ProBook 650 G1 (Inventec Cyclone Discrete rev.x01)

Схемы к ноутбукам HP Probook 4421S, 4420S, 4321S (Quanta SX6-MV-DIS boardview)

Схемы к ноутбукам HP Compaq 6515B, 6715B, 6715S (Inventec TT1.0 rev.A02)

Схемы к ноутбукам HP Probook 4710S, 4510S, 4411S (Inventec Invicta Cycle1 rev.A03)

Схемы к ноутбукам HP ZE2000 (quanta ct8)

Схемы к ноутбукам HP Pavilion DV7 (compal la 4081 rev.0.3)

Схемы к ноутбукам HP Pavilion DM4

Схемы к ноутбукам HP Compaq 510, 511, 610

Схемы к ноутбукам HP Probook 4421S, 4420S, 4321S (Quanta SX6 rev.2b)

Схемы к ноутбукам HP Pavilion G6 (Quanta R12)

 

Схемы к ноутбукам HP Pavilion DV7 (Quanta-lx6-7)

Схемы к ноутбукам HP Pavilion DV7 (Quanta-lx89)

Схемы к ноутбукам HP Compaq NX7400 (gallo-inventec)

Схемы к ноутбукам HP Compaq 2510p (Quanta OT2)

Схемы к ноутбукам HP Pavilion G4, G6, G7 (quanta r.23, rev.1a)

 

zremcom.ru

Схема контроллера литий-ионного аккумулятора.

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V  (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Ремонт сетевого адаптера питания. Его устройство и схема.

Простой ремонт сетевых блоков питания от маломощной электроники

Сетевые адаптеры питания – миниатюрные блоки питания различной электронной бытовой аппаратуры. Применяются для питания антенных усилителей, радиотелефонов, зарядных устройств. Несмотря на активное внедрение импульсных блоков питания, трансформаторные ещё активно используются и находят применение в быту пользователя.

Нередки случаи, что данные трансформаторные блоки выходят из строя.

При поломке адаптера можно его заменить новым, стоимость их невелика. Но зачем отдавать кровные, если в большинстве случаев можно устранить неисправность самому в течение 15–30 минут и избавить себя от поисков замены и траты денег?

Состав обычного маломощного блока питания и его ремонт

На стол ремонта попал адаптер на 12V и ток 0,1A от антенного усилителя.

На фото адаптер после произведённого ремонта.

Из каких частей состоит обычный трансформаторный адаптер?

Если разобрать адаптер питания, то внутри мы обнаружим трансформатор (1) и небольшую электронную схему (2).

Трансформатор (1) служит для понижения переменного сетевого напряжения 220V до уровня 13–15 В.

Электронная схема служит для выпрямления переменного напряжения (превращение его в постоянное напряжение) и его стабилизации на уровне 12V.

Как видим, классический блок питания на основе трансформатора устроен довольно просто. Что же может сломаться в таком простом устройстве?

Взглянем на принципиальную схему.

На принципиальной схеме T1 – это понижающий трансформатор. Типичными неисправностями трансформатора являются перегорание или обрыв провода первичной (), и, реже, вторичной () обмотки. Как правило, неисправна первичная, сетевая обмотка ().

Причиной обрыва или перегорания служит тонкий провод, который не выдерживает сетевых всплесков напряжения и перегрузок. Скажем спасибо китайцам, они экономные ребята, потолще провод не хотят мотать…

Проверить исправность трансформатора довольно просто. Необходимо измерить сопротивление первичной и вторичной обмоток. Сопротивление первичной обмотки должно составлять несколько единиц килоом (1кОм = 1000 Ом), вторичной – несколько десятков Ом.

При проверке трансформатора сопротивление первичной обмотки оказалось равно 1,8 кОм, что свидетельствует о её целостности. Никакого обрыва нет.

Для вторичной обмотки сопротивление составило 25,5 Ом, что тоже нормально. Трансформатор оказался исправен.

Чтобы получить правильные показания сопротивлений обмоток необходимо придерживаться следующих правил:

  • При измерении касаться контактных выводов только щупами мультиметра. Браться обеими руками за токоведущие части щупов и проводить измерения недопустимо, так как показания мультиметра будут неверные! Подробно о том, как правильно измерять сопротивление мультиметром, я уже рассказывал.

    Помните, человеческое тело тоже обладает сопротивлением и может шунтировать то сопротивление, которое вы замеряете. В данном случае – это сопротивление обмоток. Данное правило справедливо при измерении любых сопротивлений.

  • Необходимо исключить влияние сопротивлений других деталей. Что это значит? Это значит, что деталь должна быть изолирована от других частей схемы, т.е. выпаяна из платы, отключена.

    В случае ремонта адаптера рекомендуется перед замером сопротивления вторичной обмотки отпаять выводы, идущие к электронной схеме. Это поможет исключить влияние сопротивления электронной схемы на замеряемое сопротивление.

Диодный мост на дискретных диодах VD1-VD4 служит для выпрямления переменного тока вторичной обмотки. Распространённая неисправность диодного моста, это «пробой» одного или нескольких диодов, из которых он состоит. При такой неисправности диод превращается в обычный проводник. Проверяются диоды довольно просто, можно даже не выпаивать их из платы, а замерить сопротивление каждого из диодов по отдельности. Если диод пробит, то мультиметр покажет очень низкое сопротивление (0 или единицы Ом).

Чтобы другие элементы схемы не вносили путаницы в показания мультиметра, один из выводов диода лучше выпаять из схемы. После проверки не забываем запаять его обратно.

Конденсаторы С1 и С2 служат для фильтрации напряжения и являются вспомогательными элементами стабилизатора 78L12. Интегральный стабилизатор 78L12 обеспечивает на выходе блока питания стабилизированное напряжение 12V.

Цепь, состоящая из резистора R1 и светодиода VD5, служит для индикации работы устройства. Если какая-либо часть схемы неисправна, например, трансформатор или стабилизатор на микросхеме 78L12, то на выходе блока питания никакого напряжения не будет и светодиод VD5 не засветится. По его свечению, можно сразу определить в чём проблема. Если светится, то вероятнее всего перебит соединительный провод. Ну, а если нет, то, возможно, неисправна электронная начинка блока питания.

Наиболее часто трансформаторные блоки питания для активных антенн выходят из строя по причине выгорания стабилизатора на микросхеме 78L12.

При ремонте блока питания следует придерживаться следующей последовательности действий:

  • При наличии индикации (светодиод светится) следует искать неисправность в проводах, по которым напряжение поступает на питаемый прибор. Достаточно “прозвонить” провода мультиметром.

  • При отсутствии индикации следует замерить сопротивление первичной обмотки трансформатора. Сделать это легко, можно даже не разбирать блок питания, а замерить сопротивление обмотки через контакты сетевой вилки.

  • Разбираем блок питания, производим внешний осмотр. Обращаем внимание на потемневшие участки вокруг радиодеталей, сколы и трещины на корпусах стабилизатора питания (78L12 или аналога), вздутия конденсаторов фильтра.

В процессе ремонта адаптера питания для активной антенны выяснилось, что неисправна микросхема-стабилизатор 78L12. Был также заменён электролитический конденсатор C1 (100мкФ * 16В) на конденсатор с большей ёмкостью – 470 мкФ (25В). При замене конденсатора следует учитывать полярность его включения в схему.

Знать цоколёвку (расположение и назначение) выводов стабилизатора 78L12 не обязательно. Но, необходимо запомнить, зарисовать или сфотографировать расположение неисправной микросхемы на печатной плате. В таком случае, если забудете, как была впаяна микросхема в печатную плату, то у вас уже будет рисунок или фото, по которому легко определить правильную установку элемента в схему.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

0 comments on “Ja pa8 схема – Схемы блоков питания для ноутбуков. Cборка № 5

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *