TL494 ШИМ — КОНТРОЛЛЕР — DataSheet
1 Характеристики
- Готовый ШИМ — контроллер
- Незадействованные выводы для 200 мА приемника или источника тока
- Выбор однотактного или двухтактного режима работы
- Внутренняя схема запрещает двойной импульс на выходе
- Изменяемое время задержки обеспечивает контроль всего спектра
- Внутренний регулятор обеспечивает 5 В стабильного напряжения с допуском 5%
- Схема архитектуры позволяет легко синхронизироваться
2 Применение
- Настольные ПК
- Микроволновые печи
Источники питания: AC/DC; изолированный; с коррекцией коэффициента мощности; >90 Вт
- Серверы БП
- Солнечные микро-преобразователи
- Стиральные машины классов : Low-End и High-End
- Электровелосипеды
- Источники питания: AC/DC; изолированный; без коррекции коэффициента мощности; <90 Вт
- Датчики дыма
- Солнечные преобразователи
3 Описание
TL 494 включает в себя все функции необходимые для построения схемы управления широтно-импульсной модуляцией (ШИМ) на одном кристалле. Предназначен в основном для управления питанием, это устройство дает гибкость для конкретного применения в адаптации в схемах управления блоков питания. TL 494 содержит два усилителя ошибки, внутренний регулируемый генератор, (DTC) управляемый компаратор временной задержки, импульсно управляемый переключатель, источник опорного напряжения 5В ± 5%, контроль выходной цепи.
Усилители ошибки выдают синфазное напряжение в диапазоне -0.3 В to Vcc — 2 В. Компаратор времени задержки имеет фиксированное смещение, что дает 5% временную задержку. Внутренний генератор можно обойти путем отключения вывода RT и подключения пилообразного напряжения к CT, что применяется для общих цепей в синхронизации источников питания.
Независимые выходные формирователи на транзисторах дают возможность подключать нагрузку по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. TL494 может работать в однотактном и двухтактном режиме. Архитектура устройства не дает возможности подачи двойного импульса в двухтактном режиме.
TL494C может работать в диапазоне температур от 0°C до 70°C. TL494I работает в диапазоне температур от –40°C до 85°C.
Серийный номер | Корпус(кол-во выводов) | Размеры |
TL 494 | SOIC (16) | 9.90 мм × 3.91 мм |
PDIP (16) | 19.30 мм × 6.35 мм | |
SOP (16) | 10.30 мм × 5.30 мм | |
TSSOP (16) | 5.00 мм × 4.40 мм |
4 Расположение и назначение выводов

Вывод | Тип | Описание | |
Название | Номер | ||
1IN+ | 1 | I | Неинвертирующий вход усилителя ошибки 1 |
1IN- | 2 | I | Инвертирующий вход усилителя ошибки 1 |
2IN+ | 16 | I | Неинвертирующий вход усилителя ошибки 2 |
2IN- | 15 | I | Инвертирующий вход усилителя ошибки 2 |
C1 | 8 | O | Коллектор Биполярного Плоскостного Транзистора (БПТ) 1 |
C2 | 11 | O | Коллектор БПТ 2 |
CT | 5 | — | Вывод для подключения конденсатора для установки частоты генератора |
DTC | 4 | I | Вход компаратора задержки времени |
E1 | 9 | O | Эмиттер БПТ 1 |
E2 | 10 | O | Эмиттер БПТ 2 |
FEEDBACK | 3 | I | Вывод для обратной связи |
GND | 7 | — | Общий |
OUTPUT CTRL | 13 | I | Выбор режима работы |
REF | 14 | O | Опорное напряжение 5В |
RT | 6 | — | Вывод для подключения резистора для установки частоты генератора |
VCC | 12 | — | Напряжение питания (+) |
5 Спецификация
5.1 Абсолютные максимальные значения
Мин. | Макс. | Ед. Изм. | ||
VCC Напряжение питания | 41 | В | ||
VI Напряжение на входе усилителя | VCC + 0.3 | В | ||
VO Напряжение на коллекторе | 41 | В | ||
IO Ток коллектора | 250 | мА | ||
Температура припоя 1,6 мм в течении 10 сек. | 260 | °C | ||
Tstg Температура хранения | –65 | 150 | °C |
5.2 Значения электростатического заряда
Макс. | Ед. изм. | ||
V(ESD) Электростатический заряд | Модель человеческого тела (HBM), посредством ANSI/ESDA/JEDEC JS-001, все выводы | 500 | В |
Модель заряда на устройстве (CDM), посредством JEDEC спецификации JESD22-C101, все выводы | 200 | В |
5.3 Рекомендуемые рабочие значения
Мин. | Макс. | Ед. Изм. | |
VCC Напряжение питания | 7 | 40 | В |
VI Напряжение на входе усилителя | -0,3 | VCC – 2 | В |
VO Напряжение на коллекторе | 40 | В | |
Ток коллектора (каждого транзистора) | 200 | мА | |
Ток обратной связи | 0,3 | мА | |
fOSC Частота генератора | 1 | 300 | мА |
CT Емкость конденсатора генератора | 0,47 | 10000 | кГц |
RT Сопротивление резистора генератора | 1,8 | 500 | кОм |
TA Рабочая температура на открытом воздухе | 0 | 70 | °C |
-40 | 85 | °C |
5.4 Тепловые характеристики
В рабочем диапазоне температур на открытом воздухе
Параметр | TL494 | Ед. изм. | ||||
D | DB | N | NS | PW | ||
RθJA Полное тепловое сопротивление для корпуса | 73 | 82 | 67 | 64 | 108 | °C/Вт |
5.5 Электрические характеристики
В рабочем диапазоне температур на открытом воздухе, VCC = 15 В, f = 10 кГц
Параметр | Условия испытаний(1) | TL494C, TL494I | Ед. изм | ||
Мин. | Тип.(2) | Макс. | |||
Выходное напряжение (REF) | IO = 1 мА | 4.75 | 5 | 5.25 | В |
Регулировка входа | VCC от 7 В до 40 V | 2 | 25 | мВ | |
Регулировка выхода | IO от 1 мА to 10 мА | 1 | 15 | ||
Изменение выходного напряжения при температуре | ΔTA от MIN до MAX | 2 | 10 | мВ/В | |
Выходной ток короткого замыкания(3) | REF = 0 V | 25 | мА |
(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.
(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
(3) Продолжительность короткого замыкания не должна превышать одну секунду.
5.6 Электрические характеристики генератора
CT = 0,01 мкФ, RT = 12 кОм
Параметр | Условия испытаний(1) | TL494C, TL494I | Ед. изм. | ||
Мин. | Тип.(2) | Макс. | |||
Частота | 10 | кГц | |||
Стандартное отклонение частоты(3) | Все значения VCC, CT, RT, и TA постоянны | 100 | Гц/кГц | ||
Изменение частоты от напряжения | VCC от 7 В до 40 В, TA = 25°C | 1 | Гц/кГц | ||
Изменение частоты от температуры(4) | ΔTA — от MIN до MAX | 10 | Гц/кГц |
(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.
(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
(3) Стандартное отклонение является мерой статистического распределения относительно среднего рассчитанного по формуле:
(4) Температурный коэффициент конденсатора и резистора не учитываются.
5.7 Электрические характеристики усилителя ошибки
Параметр | Условия испытаний | TL494C, TL494I | Ед. изм. | ||
Мин. | Тип.(1) | Макс. | |||
Входное напряжение смещения | VO (FEEDBACK) = 2.5 В | 2 | 10 | мВ | |
Входной ток смещения | VO (FEEDBACK) = 2.5 В | 25 | 250 | нА | |
Входной ток смещения | VO (FEEDBACK) = 2.5 В | 0.2 | 1 | мкА | |
Диапазон входного напряжения | VCC от 7 В до 40 В | -0.3 до VCC – 2 | В | ||
Коэффициент усиления разомкнутой цепи | ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм | 70 | 95 | dB | |
Полоса пропускания | ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм | 800 | кГц | ||
Коэффициент подавления синфазных сигналов | ΔVO = 40 В, TA = 25°C | 65 | 80 | dB | |
Выходной ток приемника(FEEDBACK) | VID = –15 мВ до –5 В, V (FEEDBACK) = 0.7 В | 0.3 | 0.7 | мА | |
Выходной ток источника(FEEDBACK) | VID = 15 мВ до 5 В, V (FEEDBACK) = 3.5 В | -2 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.8 Выходные электрические характеристики
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. | |
Ток коллектора в закрытом состоянии | VCE = 40 В, VCC = 40 В | 2 | 100 | мкА | ||
Ток эмиттера в закрытом состоянии | VCC = VC = 40 В, VE = 0 | -100 | мкА | |||
Напряжение насыщения коллектор — эмиттер | Общий эмиттер | VE = 0, IC = 200 мА | 1.1 | 1.3 | В | |
Эмиттерный повторитель | VO(C1 или C2) = 15 В, IE = –200 мА | 1.5 | 2.5 | |||
Выходной контроль входного тока | VI = Vref | 3.5 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.9 Электрические характеристики управления временем задержки
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Входной ток смещения (DEAD-TIME CTRL) | VI от 0 до 5.25 В | -2 | -10 | мкА | |
Максимальная скважность импульсов на каждом выходе | VI (DEAD-TIME CTRL) = 0, CT = 0.01 мкФ, RT = 12 кОм | 45% | — | ||
Входное пороговое напряжение (DEAD-TIME CTRL) | Нулевой коэффициент заполнения | 3 | 3.3 | В | |
Максимальная скважность | 0 |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.10 Электрические характеристики ШИМ — компаратора
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Входное пороговое напряжение (FEEDBACK) | Нулевая скважность | 4 | 4.5 | В | |
Входной ток приемника (FEEDBACK) | V (FEEDBACK) = 0.7 В | 0.3 | 0.7 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.11 Общие электрические характеристики устройства
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. | |
Ток потребляемый в режиме ожидания | RT = Vref, Все остальные входы и выходы отключены | VCC = 15 В | 6 | 9 | мА | |
VCC = 40 В | 10 | 15 | ||||
Средний потребляемый ток | VI (DEAD-TIME CTRL) = 2 В, | 7.5 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.12 Коммутационные характеристики
TA = 25°C
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Время нарастания | Схема с общим эмиттером | 100 | 200 | нс | |
Время спада | 25 | 100 | нс | ||
Время нарастания | Схема эмиттерного повторителя | 100 | 200 | нс | |
Время спада | 40 | 100 | нс |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.13 Типовые характеристики
![]() Рис. 1 Частота колебаний генератора и ее отклонение от сопротивления резистора генератора | ![]() Рис. 2 Усиление напряжения от частоты |
![]() Рис. 3 Усилитель ошибки — передаточные характеристики | ![]() Рис. 4 Усилитель ошибки — график Боде |
6 Измеряемые параметры
Рис. 5 Проверка работы цепи и осциллограммы
Рис. 6 Характеристики усилителя
Прим. А: CL включает датчик и управляющую емкость
Рис. 7 Схема включения с общим эмиттером
Прим. А: CL включает датчик и управляющую емкость
Рис. 8 Схема включения эмиттерного повторителя
Применение

- VI = 32 В
- VO = 5 В
- IO = 10 A
- fOSC = 20-кГц частота коммутации
- VR = 20-мВ размах напряжения (VRIPPLE)
- ΔIL = 1.5-A изменение тока индуктора

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
rudatasheet.ru
Двухтактный ШИМ – контроллер TL494, TL494CN, описание на русском, схема включения, аналоги, применение — Зарубежные микросхемы — Микросхемы — Справочник Радиокомпонентов — РадиоДом
Двухтактный ШИМ – контроллер TL494, TL494CN, TL494CD
Основные технические характеристики:
Полный набор функций ШИМ-управления
Выходной втекающий или вытекающий ток каждого выхода …..200 мАмпер
Встроенная схема подавления сдвоенных импульсов
Широкий диапазон регулировки выходного сигнала
Выходное опорное напряжение…………………………………….5 вольт (+-0,5 %)
Общее описание и аналоги, применение:
TL494, TL494CN, TL494CD — полностью заменяемые аналоги это KA7500B и всем известная КР1114ЕУ4Специально созданная структура микросхемы серии TL494 обеспечивают радиолюбителю широкие возможности при конструировании схем управления. TL494 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5 вольт и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от – 0,3…(Vcc-2) вольт. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.
Приборы, имеющие индекс L, гарантируют нормальную работу в диапазоне температур –5…85 С, с индексом С гарантируют стабильную работу в диапазоне температур 0…70 С.
Структурная схема микросхемы TL494CN:
Предельные значения основных параметров микросхем серии TL494CN:
Напряжение питания……………………………………………………………..41 вольт
Входное напряжение усилителя……………………………………..(Vcc+0.3) вольт
Выходное напряжение коллектора……………………………………………41 вольт
Выходной ток коллектора…………………………………………………..250 мАмпер
Мощность рассеивания в непрерывном режиме……………………………1 Ватт
Рабочий диапазон температур окружающей среды:
С индексом L………………………………………………………………….. от -25 до 85
С индексом С…………………………………………………………………..от 0 до 70 С
Диапазон температур хранения ……………………………………..от -65 до +150 С
Цоколёвка корпуса TL494CN:
Полное функциональное описание на русском:
Микросхема TL494 представляет собой ШИМ-контролер для импульсного источника питания, работающий на фиксированной частоте, и включает в себя все нужные для этого готовые блоки. Встроенный собственный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С.
Частоту генератора TL494 рассчитываем формуле на картинке ниже:
Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами. Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия тактов встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно, повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи(вывод 3).
Применяется в основном для управления мощных силовых устройств, такие как импульсный блок питания (ИПБ), повышающие преобразователи напряжения (инвертор) 12 в 220 в, зарядные устройства для автомобильных аккумуляторов, генераторы разнообразных регулируемых сигналов.
Диаграмма работы TL494CN:
Вход компаратора регулировки мертвого времени имеет смещение 0,12 вольт, что ограничивает минимальное мертвое время на выходе первыми 4 % длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96 % в том случае, если вывод 13 заземлен, и 48 % в том случае, если на вывод 13 подано опорное напряжение.
radiohome.ru
TL494, TL494CN, TL494CD, TL494IN, TL494C, TL494CI — схема включения, описание, аналоги, datasheet. — Зарубежные микросхемы — Микросхемы — Справочник Радиокомпонентов — РадиоДом
TL494, TL494CN, TL494CD, TL494IN, TL494C, TL494CI — схема включения, описание, аналоги, datasheet.
TL494 — схема включения, описание, аналоги, datasheetСегодня большая часть современных импульсных источников питания, да и многие схемы конструируют в виду своей простоты и минимальным требованиям на TL494, которая является импульсным ШИМ контроллером. Силовая часть собирается на мощных полевых транзисторах. Схема включения микросхемы TL494 очень простая, дополнительных радиокомпонентов применяется как правило очень мало, в даташите подробно описываются все нужные параметры. Выпускаются многими производителями в нескольких модификациях: TL494CN, TL494CD, TL494IN, TL494C, TL494CI.Основные характеристики и функционал микросхем серии TL494Микросхема TL494 разработана как Шим контроллер для импульсных блоков питания, с фиксированной частотой работы. Для создания рабочей частоты требуется два дополнительных внешних компонентов: резистор и конденсатор. Микросхема имеет источник опорного напряжения на 5 вольт, погрешность которого составляет не более 5%.Параметр Значение Область применения TL494:Блоки питания мощностью более 80 ватт AC-DС с PFC; бытовые микроволновые печи; автомобильные повышающие преобразователи с 12 вольт до 220 вольт; источники энергоснабжения для серверов; мощные инверторы для солнечных батарей; электрические велосипеды и скутеры; понижающие преобразователи; детекторы дыма; настольные компьютеры и прочее. |
radiohome.ru
Контроллер ШИМ импульсного блока питания TL494
Микросхема типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США), выпускается так же фирмой SHARP (Япония) под названием IR3M02, фирмой SAMSUNG (Корея) — КА7500, фирмой FUJITSU (Япония) — МВ3759, так же есть и отечественный аналог — КР1114ЕУ4.
Микросхема широко применяется в импульсных блоках питания, в частности, в блоках питания персональных компьютеров, а так же в DC/DC преобразователях.
На рисунке 1 показана цоколевка микросхемы.
Рис. 1
Микросхема специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.2):
Рис. 2
- генератор пилообразного напряжения Oscillator; частота которого определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и рассчитывается по формуле: F=1,1/RtCt
- источник опорного стабилизированного напряжения Reference Regulator (Uref=+5B) с внешним выходом на выводе 14;
- компаратор «мертвой зоны» Deadtime Comparator;
- компаратор ШИМ PWM Comparator;
- усилитель ошибки по напряжению 1;
- усилитель ошибки по сигналу ограничения тока 2;
- два выходных транзистора Q1 и Q2 с открытыми коллекторами и эмиттерами;
- динамический двухтактный D-триггер в режиме деления частоты на 2 — Flip-Flop;
- вспомогательные логические элементы;
- источник постоянного напряжения с номиналом 12V;
- источник постоянного тока с номиналом 0,7mA.
ИМС запускается в том случае если на 12-вывод поступает питающее напряжение в пределах от +7 до 40V. Выводы 1 и 2 — соответственно прямой и инвертирующий входы усилителя ошибки по сигналу обратной связи. Вывод 4 — вход регулировки «мертвой зоны» (это время, когда оба выходных транзистора микросхемы закрыты даже при максимальной потребляемой мощности). Выводы 5 и 6 служат для подключения внешних элементов внутреннего генератора пилообразного напряжения. Вывод 7 — общий, выводы 8 и 9 — коллектор и эмиттер первого транзистора, выводы 11 и 10 — коллектор и эмиттер второго транзистора. Вывод 13 — выбор режима работы (однотактный или двухтактный). Если на этом выводе положительное напряжение 2,4…5V двухтактный режим работы, транзисторы Q1 и Q2 открываются поочередно, выходные импульсы следуют друг относительно друга со сдвигом по фазе. Если на этом выводе напряжение составляет 0…0,4 V — однотактный режим, при этом транзисторы можно включать параллельно для увеличения выходного тока. Вывод 14 — выход опорного напряжения (+5 V) от встроенного стабилизированного источника опорного напряжения, выводы 16 и 15 — соответственно, прямой и инвертирующий входы усилителя ошибки по сигналу ограничения тока.
По функциональным узлам, входящим в состав микросхемы, ее можно разделить на аналоговую и цифровую составляющие.
К аналоговой составляющей относятся усилители ошибок, компараторы, генератор пилообразного напряжения и вспомогательные источники.
Все остальные элементы, в том числе и выходные транзисторы следует отнести к цифровой части.
Из временных диаграмм приведенных на рис. 3 видно, что моменты появления выходных управляющих импульсов, а также их длительность определяется состоянием выхода логического элемента D1. Остальная логика выполняет лишь вспомогательную функцию, разделения выходных импульсов на два канала. Оба транзистора имеют открытые коллекторы и эмиттеры, поэтому их можно подключать двояко, как с общим эмиттером, так и с общим коллектором. Триггер Flip-Flop является двухтактным динамическим D-триггером. Принцип его работы в следующем. Каждый из выходных импульсов элемента D1 своим отрицательным фронтом переключает триггер и этим меняет канал прохождения следующего импульса, т. е . исключает появление двух отпирающих импульсов за один период работы.
Рис. 3
Типовая схема импульсного DC/DC преобразователя на основе TL494 показана на рисунке 4.
Рис. 4
Основные технические характеристики:
- Диапазон напряжения питания……… ..42V;
- Максимальное напряжение коллекторов выходных транзисторов………. 42V;
- Максимальный ток коллектора выходных транзисторов…….. 0,2А;
- Опорное напряжение…… 4,5…5,5V;
- Мощность рассевания в непрерывном режиме в корпусе DIP-16 при температуре окружающей среды ниже 45°С…….. 1W;
- Ток потребления не более…….. 10mA;
- Частота генератора может быть задана в пределах……… 1…200 kHz;
- Длительность фронта импульса выходного тока не более….. 200nS;
- Длительность спада импульса выходного тока не более……. 100nS;
- Сопротивление резистора RT может быть в пределах……. 1,8… 500 kOm;
- Емкость конденсатора СТ может быть в пределах…… 0,0047…10 мкФ;
- Рабочий диапазон температуры:
- TL494B…….. -40…+125°С;
- TL494C…….. 0…+70°С;
- TL494I ……… -40…+85°С.
Возможно, вам это будет интересно:
meandr.org
TL494 схема
TL494 — ШИМ контроллер.
Описание
- Полный набор функций ШИМ-управления
- Выходной втекающий или вытекающий ток каждого выхода 200мА
- Возможна работа в двухтактном или однотактном режиме
- Встроенная схема подавления сдвоенных импульсов
- Широкий диапазон регулировки
- Выходное опорное напряжение 5В +-05%
- Просто организуемая синхронизация
Отечественный аналог: 1114ЕУ3/4.
Специально созданные для построения источников вторичного питания (ИВП), микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИВП. Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.
Допускается синхронизация встроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИВП.
Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме. Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур –5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.Структурная схема TL494

Расположение выводов

Предельные значения параметров
Напряжение питания 41В
Входное напряжение усилителя (Vcc+0.3)В
Выходное напряжение коллектора 41В
Выходной ток коллектора 250мА
Общая мощность рассеивания в непрерывном режиме 1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L -25..85С
-с суффиксом С ..0..70С
Диапазон температур хранения -65…+150С
Описание работы
Микросхема TL494 представляет собой ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле:
Fosc=1.1/R*C
Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см. временную диаграмму). Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).
Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.
Увеличить длительность мертвого времени на выходе, можно подав на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого потенциалом на входе регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объединены функцией ИЛИ на не инвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота при этом равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Этот режим рекомендуется использовать, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.
Микросхема TL494 имеет встроенный источник опорного напряжения на 5В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение допускает погрешность 5% в диапазоне рабочих температур от 0 до 70С.
Временная диаграмма TL949

hard-wired.ru
Микросхема TL494 представляет собой ШИМ – контроллер, отлично подходящий для построения импульсных блоков питания различной топологии и мощности. Может работать как в однотактном, так и в двухтактном режиме. Отечественным ее аналогом является микросхема КР1114ЕУ4. Texas Instruments, International Rectifier, ON Semiconductor, Fairchild Semiconductor – многие производители выпускают данный ШИМ-контроллер. У Fairchild Semiconductor он называется, например, KA7500B. Если просто посмотреть на обозначения выводов, становится ясно, что данная микросхема имеет довольно широкие возможности для регулировки. Рассмотрим обозначения всех выводов:
На функциональной диаграмме можно видеть внутреннюю структуру микросхемы. Для примера, если применить конденсатор емкостью 1нФ, а резистор на 10кОм, то частота пилообразного напряжения на выходе 5 составит примерно f = 1.1/(10000*0.000000001) = 110000Гц. Частота может отличаться, по данным производителя, на +-3% в зависимости от температурного режима компонентов. Вход регулировки мертвого времени 4 предназначен для определения паузы между импульсами. Компаратор мертвого времени, обозначенный на схеме «Dead-time Control Comparator», даст разрешение выходным импульсам, если напряжение пилы выше напряжения, подаваемого на вход 4. Так, подавая на вход 4 напряжение от 0 до 3 вольт, можно регулировать скважность выходных импульсов, при этом максимальная длительность рабочего цикла может составлять 96% в однотактном режиме и 48%, соответственно, в двухтактном режиме работы микросхемы. Минимальная пауза здесь ограничена значением 3%, которое обеспечивается встроенным источником с напряжением 0.1 вольта. Вывод 3 также имеет значение, и напряжение на нем так же играет роль для разрешения импульсов на выходе. Выводы 1 и 2, а так же выводы 15 и 16 компараторов ошибки могут быть использованы для защиты проектируемого устройства от перегрузок по току и по напряжению. Если напряжение, подаваемое на вывод 1, станет выше, чем подаваемое на вывод 2, или напряжение, подаваемое на вывод 16, станет выше, чем напряжение, подаваемое на вывод 15, то вход ШИМ-компаратора «PWM Comparator» (вывод 3) получит сигнал для запрета импульсов на выходе. Если данные компараторы использовать не планируется, то их можно заблокировать, замкнув на землю неинвертирущие входы, а инвертирующие подключив к источнику опорного напряжения (вывод 14). Максимальный ток для каждого из выходных транзисторов микросхемы (выводы 8,9,10,11) составляет 250мА, однако производитель не рекомендует превышать 200мА. Соответственно, при параллельной работе выходных транзисторов (вывод 9 соединен с выводом 10, а вывод 8 соединен с выводом 11) максимально допустимый для ток составит 500мА, но лучше не превышать 400мА. Выходные транзисторы могут быть включены по-разному, в соответствии с целью разработчика, по схеме с общим эмиттером, либо по схеме эмиттерного повторителя. |
Лучшее сочетание вакуумных и полупроводниковых характеристик — однотактный гибридный усилитель звука. Мы не создаём иллюзий, |
grimmi.ru
Схемотехника блоков питания персональных компьютеров. Часть 3.
Узел управления
Первые две статьи цикла «Схемотехника блоков питания персональных компьютеров»:
Узел управления импульсного блока питания выполняет много важных функций.
Во-первых, формирование прямоугольных импульсов с их последующим усилением для управления мощными транзисторами высокочастотного преобразователя.
Во-вторых, стабилизация выходных напряжений.
«Сердцем» узела управления является ШИМ-контроллер TL494CN. Аналогами этой микросхемы являются DBL494, KIA494AP, KA7500, MB3759, IR3MO2 и наша отечественная КР1114ЕУ4.
Узел управления состоит из, собственно, микросхемы с небольшим количеством дискретных элементов и промежуточного каскада, задачей которого, является усиление импульсов сформированных микроконтроллером до величины достаточной для управления мощными транзисторами высокочастотного преобразователя. Далее на рисунке показана внутренняя структура микросхемы TL494CN.
В состав микросхемы входит задающий генератор пилообразного напряжения G1. Элементы C3 и R8 задают частоту следования импульсов. Затем импульсы поступают на инвертирующие входы схем сравнения (компараторов) А3 и А4.
Выходы компараторов объединяются на логический элемент 2ИЛИ (D1), то есть импульс на выходе элемента появится при наличии импульса на любом из входов. Далее импульсы поступают на счётный вход (С) триггера D2. Каждый приходящий импульс изменяет состояние триггера на противоположное. Далее через логический элемент 2И (D3, D4) импульсы приходят на логический элемент 2ИЛИ-НЕ (D5, D6). Благодаря конфигурации схемы импульсы появляются поочерёдно на выходах элементов D5 и D6, а, следовательно, и на базах транзисторов V3 и V4, что и требуется для работы двухтактной схемы.
Если высокочастотный преобразователь выполнен по однотактной схеме, то 13 вывод микросхемы соединяют с корпусом и импульсы на выходах D5 и D6 появляются одновременно.
Схема сравнения А1 представляет собой формирователь-усилитель сигнала ошибки в схеме стабилизации выходного напряжения. +5V через делитель из резисторов R1,R2 поступает на один из входов. На другой вход (вывод 2) через регулируемый делитель подаётся эталонное напряжение, которое вырабатывает встроенный в микросхему стабилизатор А5.
Выходное напряжение А1 пропорционально разности входных напряжений. Оно задаёт порог срабатывания компаратора А4, то есть скважность импульсов на его выходе. Величина выходного напряжения вторичных источников питания зависит от скважности импульсов. В результате получается замкнутая в кольцо система автоматического сравнения и регулирования выходного напряжения. Компаратор А3 предназначен для формирования паузы между импульсами на выходе элемента 2ИЛИ (D1).
Минимальный порог срабатывания компаратора А3 задан источником напряжения GV1. Если напряжение на выводе 4 микросхемы растёт, длительность паузы так же увеличивается, а максимальное выходное напряжение источника питания уменьшается. Поскольку амплитуда импульсов на входах всех выпрямителей изменяется одинаково, стабилизация с помощью широтно-импульсной модуляции любого из выходных напряжений, стабилизирует и все остальные. В данном случае стабилизируемым напряжением является +5V.
Следует отметить, что определение и точная локализация неисправности ШИМ-контроллера, это самая сложная процедура при ремонте импульсного блока питания своими силами. Для этого необходим лабораторный источник питания и главное двухлучевой или двухканальный осциллограф. И если после проверки всех элементов блока питания, что в принципе не сложно, блок всё же «плывёт», то лучше заменить микросхему TL494CN на заведомо исправную, тем более что стоимость её весьма невысока.
НазадДалее
Главная » Мастерская » Текущая страница
go-radio.ru