Схема амперметра на микроконтроллере – 0-10 ATtiny13

Встраиваемый ампервольтметр на ATmega8

Автор Hackaday.io под ником Electroniclovers123 рассказывает, как изготовить простой встраиваемый ампервольтметр на микроконтроллере ATmega8 и дисплее на чипе, совместимом с HD44780 (КБ1013ВГ6). Далее приведена схема устройства:

Шунтом амперметра служат два соединённых параллельно резистора сопротивлением в 0,33 Ома и мощностью в 5 Вт. Один из них на схеме не виден из-за неправильного кадрирования изображения самим мастером. Левый вывод шунта соединён с общим проводом ампервольтметра, а правый — с выводом 26 микроконтроллера. При помощи АЦП микроконтроллер измеряет падение напряжения на этом шунте. Таким образом, общий провод БП нагрузки оказывается соединён с общим проводом ампервольтметра, но его нельзя соединять с общим проводом самой нагрузки, иначе часть потребляемого нагрузкой тока пойдёт в обход шунта, и показания амперметра исказятся. Напряжение питания нагрузки попадает через делитель на резисторах на вывод 27 микроконтроллера, а напряжение питания самого ампервольтметра, ещё не пропущенное через стабилизатор — через другой делитель на вывод 25 микроконтроллера. Таким образом, при помощи трёх встроенных в микроконтроллер АЦП самоделка может измерять три параметра: ток, потребляемый нагрузкой, напряжение её питания и собственное напряжение питания. В программе заложены все необходимые коэффициенты, учитывающие параметры шунта и делителей напряжения. Еслм они будут отличаться, код можно скорректировать и откомпилировать заново. Для переключения режимов отображения информации в устройстве предусмотрена единственная кнопка. И вот мастер получил печатные платы (одну себе, одну знакомому, который тоже решил собрать такой же ампервольтметр?) и все необходимые компоненты:

Он впаивает в плату все компоненты (прошив микроконтроллер заранее, это не Arduino), не забыв установить стабилизатор на теплоотвод. Это особенно важно, если ампервольтметр и нагрузка питаются от одного и того же источника, напряжение которого заметно больше 5 В (но не больше 35). В некоторых случаях может потребоваться увеличение размера теплоотвода.

Предусматривает на плате плоские контакты для соединителей, аналогичных РППИ, и подключает с помощью таких соединителей проводники большого сечения (например, 2,5 мм2) для источника питания и нагрузки. Но полностью реализовать возможности проводников этого сечения (ток до 32 А) помешают печатные проводники, которые столько не выдержат.




Затем мастер запитывает устройство от импульсного преобразователя с 12 В на выходе:



Включает питание преобразователя, выходное напряжение которого регулирует миниатюрной отвёрткой, медленно вращая подстроечный резистор на его плате. В момент снятия скриншота с видео это напряжение составляет 11,28 В.

Далее приведено само видео с процессом сборки и наладки:

Архив со всеми файлами, необходимыми для повторения ампервольтметра, включая прошивку, лежит здесь.


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Вольтметр(амперметр)на микроконтроллере Attiny2313 / Микроконтроллеры / Блоги по электронике

Предлагаю вашему вниманию конструкцию цифрового вольтметра, который также может быть переделан в амперметр. Схема была взята из журнала Радио №2 за 2010 год. Схема представлена на рисунке

Вольтметр предназначен для измерения напряжения до 0-99,99 в, этот интервал разбит на два участка – 0-9,999в и 10-99,99 в. Переключение с одного диапазона на другой –автоматическое. Входное сопротивление на первом участке – 470 кОм, на втором – около 100 кОм, абсолютная погрешность измерения на первом участке составляет ±3мв, напряжение питания – 15-20 в, потребляемый ток – 60мА(зависит от примененного семисегментного индикатора). Период повторения измерения – 100мс, максимальное время одного цикла преобразования при входном напряжении 9,999 в – 10мс. При превышении измеряемым напряжением 99,99 в на индикаторе отображается число «9999», которое мигает с частотой 2Гц. Полярность входного напряжения — положительная.
Принцип работы вольтметра основан на методе преобразования измеряемого напряжения в частоту с помощью однократного интегрирования. Это позволяет по сравнению с микроконтроллерами, имеющими встроенные десятиразрядные АЦП, получить большую разрешающую способность в широком интервале измеряемого напряжения. Подсчет частоты, переключение пределов и вывод результатов измерения на светодиодный индикатор осуществляет микроконтроллер. Подробное описание работы можно прочитать в статье, в прилагаемом файле, так же исходный код и файл прошивки
depositfiles.com/files/9p9spo2oo
Теперь про доработку этого вольтметра. Резистор делителя напряжения R2 я сделал составным – резистор ПТМН – 0,5Вт 100кОм, ±0,25% и последовательно с ним многооборотный подстроечный СП5-2 на 22 кОм, резистор R5 поставил подстроечный СП3-39А на 15 кОм. Это было сделано для точного подбора сопротивления делителя напряжения при настройке вольтметра.
Вольтметр собран на печатной плате. Плата была перерисована из статьи в программе sprint layout, файл печатки прилагается ниже
depositfiles.com/files/rsbo4oebv
а вот печатка для SMD компонентов
depositfiles.com/files/zi6xq8x7f
Микроконтроллер прошивался при помощи программатора STK 200/300, в программе CodeVisionAVR.
Фьюзы для CodeVisionAVR

Фьюзы для Pony Prog

Питается вольтметр от трансформаторного блока питания с стабилизатором напряжения на микросхеме 7815, собранном по типовой схеме. Блок питания собран на печатной плате, так же на плате находится составной резистор R2 и R5. Файл печатной платы ниже.
depositfiles.com/files/nsaa4kzkj
Фото основной платы вольтметра


Фото блока питания


И теперь все в сборе

Настройка вольтметра заключается в установке резистором R3 тока зарядки конденсатора C2 и подбор сопротивления делителя напряжения. Предварительно делитель подстроечными резисторами настраивается – резистор R2 на сопротивление 117 кОм, резистор R5 на сопротивление 13 кОм. На вход прибора подают стабилизированное напряжение в интервале 9…9.8 в, контролируя образцовым вольтметром. Резистором R3 уравнивают показания налаживаемого и образцового вольтметров. Увеличивают напряжение до тех пор, пока вольтметр не переключится на второй диапазон измерений. Если показания вольтметра «зависли» при этом, то резисторами R2 и R5 добиваются переключения вольтметра на второй диапазон, после этого нужно повторить регулировку резистором R3. Подают на вольтметр максимально возможное напряжение до 100 в и резисторами R2 и R5 корректируют показания. Далее подают на вход от 5 до 10 в и при необходимости корректируют показания резистором R3. Проверяется показания вольтметра во всем диапазоне.
Фото показаний вольтметра на первом диапазоне и образцового прибора Щ301-1.

Фото показаний вольтметра на втором диапазоне и образцового прибора Щ301-1.

Вольтметр, собранный по этой схеме показал высокую точность показаний, по сравнению с китайскими мультиметрами, его можно применять и как лабораторный.
Для данного вольтметра корпус не изготавливался, вольтметр был встроен в корпус электролизера, для контроля напряжения на электродах, вместо штатного стрелочного вольтметра.
Так же данная схема вольтметра может быть переделана в амперметр.
Схема изменений приведена ниже

Показания могут лежать в диапазоне от 0,00 до 99,99А.
Децимальная точка зафиксирована, старший разряд при показаниях, меньших 10А не горит.
Делитель изъят, вместо С4 стоит танталовый конденсатор К53-4 6,8мкФ — для усреднения. В сток транзистора VT1 добавил резистор 1ом, ёмкость-то большая, хоть немного ограничивает пиковый ток разряда.
Для имеющегося шунта необходимо пересчитать ёмкость С2: Сх=(Uпоказ./Uшунт)*С2, где Сх, мкФ — искомая ёмкость конденсатора, Uпоказ., мВ — требуемое максимальное показание амперметра, Uшунт, мВ — напряжение на шунте, соответствующее максимальному измеряемому току, С2 — 2,2мкФ. Пусть на шунте падает 300мВ. Для 10А получается: (1000/300)*2,2 = 7,33 мкФ. Ёмкость лучше округлить в большую сторону, до 8,2мкФ. Номинал резистора R4 придется подобрать, он будет меньше, чем в исходной схеме. Немного измененная прошивка прилагается ниже (так же и исход)

depositfiles.com/files/r753yeofl
Ну вот и все! Оценивайте, комментируйте, критикуйте!

electronics-lab.ru

Вольтметр и амперметр на микроконтроллере для лабораторного блока питания

Не так давно я задался целью сделать себе для работы лабораторный источник питания. Долго думал как реализовать с помощью ШИМ и мощных полевых транзисторов, просто уж очень понравилось регулировать напряжение энкодером…

После нескольких неудачных попыток пришел к мысли, что сделаю все намного проще, ведь БП был нужен срочно и без него жизнь совсем не малина. Так родился этот простенький проект…

Это несложное устройство представляет собой не что иное, как измеритель напряжения и тока нагрузки. Никакой регулировки на микроконтроллере здесь нет. Регулятор напряжения собран был на микросхеме регулируемого стабилизатора LM317. А вот обвязка, то есть вольтметр и амперметр — уже собраны на микроконтроллере, с цифровой индикацией тока и напряжения на семи сегментном светодиодном индикаторе. Конструкция не требует особых материальных затрат (например, на дорогой дисплей) и собирается за пару часов.

Орган управления только один — это кнопка переключения режимов индикации ток/напряжение. Принцип работы основан на измерении напряжения на делителе напряжения и шунте встроенным в микроконтроллер АЦП (Аналого Цифровым Преобразователем). Напряжение высчитывается из коэффициента деления делителя, а ток по падению напряжения на шунтирующем резисторе, по закону Ома естественно.

Основные технические характеристики устройства:
  • Измерение тока с точностью ……………………………..100мА
  • Измерение напряжения (до 10В) с точностью…………..0.1В
  • Измерение напряжения (выше 10В) с точностью………….1В
  • Величина входного напряжения (максимальная)………….30В
  • Величина входного напряжения (минимальная)……………7В
  • Пределы регулировки напряжения…………………….1.3В-30В
  • Максимальный ток нагрузки (LM317)………………………..1.5А

Особенности конструкции:

Печатную плату цифровой части устройства я сделал на макетной плате размерами 35х55мм. Токонесущие проводники желательно выбрать потолще, желательно сечением не менее 0.7мм, во избежание их оплавления или нагрева. Стабилизатор напряжения LM317, если вы таковой используете, тоже нужно обязательно установить на мощный радиатор и промазать место стыка теплопроводной пастой, так как стабилизатор, при большом токе изрядно греется. Еще обратите внимание, что максимальное входное напряжение устройства ограничивается делителем напряжения на входе АЦП и максимально допустимым напряжением интегрального стабилизатора. Так что желательно не превышать 30В, иначе можно легко спалить ЛМ-ку, а может даже и трансформатор.

Прошивка микроконтроллера:

Микроконтроллер в этой конструкции тактируется от внутреннего RC-генератора, работающего на частоте 1МГц. Так что дополнительного кварцевого резонатора не понадобится. Обратите внимание, что фьюз-биты микроконтроллера изменять не нужно (конечно если микроконтроллер новый), фьюзы прошивать те же, что заранее установлены заводом-производителем.

[hidepost]Скачать прошивку микроконтроллера [/hidepost]

Автор проекта: Никульников Алексей

Возможно, вам это будет интересно:

meandr.org

Простой амперметр на AVR на 3 и 0.3А

Это продолжение статьи об универсальном измерительном приборе на микроконтроллере. В ней речь пойдет о том, как на нашей универсальной плате сделать простой амперметр с пределом либо на 3А, либо на 300мА.

Схема

Схема и плата разработанного прибора универсальна. Для сборки амперметра необходимо установить на плату измерительный шунт и операционный усилитель. При этом схема будет выглядеть так:

Схема амперметра на AVR

… и печатная плата

Печатная плата амперметра

Проект платы в формате Sprint-Layout 5.0 можно скачать по ссылке.

Амперметр на 3А

Для сборки версии с пределом измерения от 0 до 3А вам потребуется установить на плату:

  1. C2 — танталовый конденсатор, 22мкФ, 16В T491C226K016AT, 1шт.
  2. C1,C3,C4 — конденсаторы на 0,1мкФ в корпусе 0805, 3шт.
  3. DA1 — стабилизатор L7805 в корпусе D2PAK, 1шт.
  4. DA2 — операционный усилитель L358N в корпусе SO8, 1шт.
  5. DD1 — микроконтроллер Atmega8a-au, 1шт.
  6. J1 — чип-резистор 1206 с сопротивлением 0 Ом, 1шт. (перемычка)
  7. HL1 — сегментный индикатор BA56-12YWA, 1шт. (желательно устанавливать через колодку)
  8. R1 — резистор с сопротивлением 0,1 Ом мощностью 1Вт, 1шт.
  9. R4 — чип-резистор 0805 на 1кОм, 1шт.
  10. R5 — подстроечный резистор CA6V на 25кОм, 1шт
  11. R6-R8, R12 — чип-резисторы 0805 на 1кОм, 4шт.
  12. R9-R11 — чип-резисторы 0805 на 56Ом, 3шт. (можно взять с меньшим сопротивлением для увеличения яркости)
  13. VT1-VT3 — транзисторы BC807-40, 3шт.
  14. Гребенка PLS-контактов

При токе через шунт R1 3А, падение напряжения на нем составит 0,3В. Резисторами R4, R5 задается коэффициент усиления этого сигнала по напряжению примерно в 10 раз. Усиленное напряжение поступает на АЦП микроконтроллера. На шунте при этом будет выделяться мощность 0,9Вт, что близко к максимально допустимой мощности. Если вы планируете часто его использовать на пределе измерения, то поставьте резистор R1 с большей мощностью.
Собранный амперметр выглядит следующим образом:

Амперметр на МК с лицевой стороны

Амперметр на МК с обратной стороны

Прошивку амперметра можно скачать здесь. Фьюз-биты без изменения.
На видео подробно показан процесс работы амперметра. К сожалению, у нас не было источника тока на 3А, поэтому нельзя было показать, что при токе больше 3А вольтметр выводит сообщение о переполнении.

Амперметр на 300мА

Отличие амперметра на 300мА от предыдущей версии исключительно в том, что необходимо поставить шунтирующее сопротивление R1 на 1Ом-1Вт и загрузить в память микроконтроллера другую прошивку.

Предосторожности

Все особенности схемы уже подробно описаны в предыдущей статье. Остается только напомнить, что амперметр необходимо подключать последовательно с нагрузкой. В противном случае есть риск порчи измерительного шунта и перегрузки входных усилительных каскадов.
Если у вас будут какие-то пожелания относительно пределов измерения, количества включенных разрядов, положения разрядной точки и т.д., то я могу скомпилировать прошивку под ваши нужно. Вам достаточно обратиться ко мне в комментариях или через форму обратной связи на сайте.

UPD:

Для того чтобы сделать версию на 50А необходимо установить элементы как в 3х-амперной версии, кроме резистора R1. Его сопротивление нужно уменьшить до 0,01Ом. Прошивку можно скачать здесь.

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров shop.customelectronics.ru.

www.customelectronics.ru

Как сделать вольтметр на микроконтроллере AVR

Подробности
Категория: Микроконтроллеры
Опубликовано 25.04.2014 09:22
Автор: Admin
Просмотров: 14882

Вольтметр на микроконтроллере Atmega8 и на светодиодном индикаторе FYT-3031-BSR-21 с общим анодом, применяют в измерениях напряжений блоков питания, при контроле зарядки аккумуляторов и  в других устройствах.

Технические характеристики вольтметра

  • количество сегментов индикатора – 3;
  • измеряемый диапазон напряжения: 0 – 50 В;
  • измерительный шаг — 0.1 В;
  • расчетная погрешность — 0.3%;
  • U напряжение питания  от 6 до 14 В.

Схема вольтметра представлена на рисунке ниже.


Схема работы вольтметра на микроконтроллере

Питающее входное напряжение ограничивает и стабилизирует микросхема DA1 — 7805. Диод VD1 является своего рода гарантом того что полярность не перепутана. Конденсаторы С1 и С2 стабилизируют работу микросхемы. Измеряемое напряжение подается на вход микроконтроллера через делитель напряжения, R1 и R2 которые расширяют диапазон измерения. Напряжение получаемое на входе в АЦП преобразуется в цифровое значение. Резистор R3 номиналом 10 кОм необходим для защиты микроконтроллера от случайного сброса.

Полученное таким образом цифровое значение раскладывается на разряды. Вывод значения каждого разряда производится последовательно при помощи динамической индикации. Набор резисторов R4 — R11 ограничивает ток в сегментах индикатора до приемлемых значений. На выводах A1 — A3 появляется положительное напряжение последовательно.

Детали и настройка схемы

Резистор R1 лучше применить прецизионный, как пример, типа С2-36 (допуск 0.5%) или С2-29В-0,125 ( допуск 0.25-0.5%). Сопротивление R2 для подстройки многооборотное, как пример, тип его 3296W. Сопротивления R3 — R11 мощностью 0,125-0,5 ватт (допуск +10%) , как пример, тип С2-33; CF1/4 и т. д. Конденсаторы С1, С2 подойдут электролитический любые с пределом Т* = 105*С, емкостью – 22-47 мкФ. Конденсатор С3 с керамики, как пример, К10-17Б. Диод VD1 лучше заменить бы на 1N4148 или даже более мощный КД247; 1N4001; и т. д. Стабилизатор U до 5 В DA1 любой, но в корпусе TO220, как пример, КР142ЕН5А и т. д.

При настройке прибора на вход дают образец напряжения – под 50 В, но не больше, и регулировкой R2 достигают того, чтобы совпали показания вольтметра и образец напряжения. Потом ось резистора подстройки контрят нитрокраской или цапонлаком, которые быстро сохнут.

Сборка вольтметра

При динамичном управлении индикаторами светодиодными необходимо учитывать эффект от накопившихся зарядов в светодиодах. Если просто снимается U с сегмента, то накопленный заряд в диффузионной емкости p-n-p перехода будет еще какое-то время засвечивать индикатор, пока p-n-p-переходная емкость полностью не потеряет заряд. Это называется паразитной подсветкой индикатора. Чтобы быстро рассеять данный заряд и четко гасить индикатор, необходимо подать на сегменты U с обратной полярностью (как пример, для индикатора с 1-общим анодом на сегмент-катод надо подать уровень до 5 В, а на анод – уровень 0 В.)

Точность вольтметра на микроконтроллере с АЦП 10 — ти разрядными не очень высокая, составляет всего лишь примерно 0.3 %. Ее вычисляют следующим образом: ошибка дискретности 1LSB + нелинейная ошибка (по Даташиту – это 2LSB). Суммарная ошибка будет равна 3LSB. Соответственно погрешность относительная 3/1024~0,3%. Погрешность абсолютная для показаний близких к 50 В 0.3% = ±0,15 В.

Следовательно, разница при этом между завышенными показаниями и заниженными вдвое больше и равняется она — 0.3 В. Говоря другими словами, прибор настраивается так, чтобы отклонения показаний получались не односторонними, а симметричными по отношению к заданной характеристики.

Исходный код и прошивка для вольтметра

  • < Назад
  • Вперёд >
Добавить комментарий

radio-magic.ru

Самодельный вольтметр и амперметр на PIC16F676

Опубликовал admin | Дата 16 апреля, 2016

     Прошлым летом по просьбе знакомого разработал схему цифрового вольтметра и амперметра. В соответствии с просьбой данный измерительный прибор должен быть экономичный. Поэтому в качестве индикаторов для вывода информации был выбран однострочный жидкокристаллический дисплей. Вообще этот ампервольтметр предназначался для контроля разрядки автомобильного аккумулятора. А разряжался аккумулятор на двигатель небольшого водяного насоса. Насос качал воду через фильтр и опять возвращал ее по камушкам в небольшой прудик на даче.

      Вообще в подробности этой причуды я не вникал. Не так давно этот вольтметр опять попал ко мне у руки для доработки программы. Все работает как положено, но есть еще одна просьба, чтобы установить светодиод индикации работы микроконтроллера. Дело в том, что однажды, из-за дефекта печатной платы, пропало питание микроконтроллера, естественно функционировать он перестал, а так как ЖК-дисплей имеет свой контроллер, то данные, загруженные в него ранее, напряжение на аккумуляторной батарее и ток, потребляемый насосом, так и остались на экране индикатора. Ранее я не задумывался о таком неприятном инциденте, теперь надо будет это дело учитывать в программе устройств и их схемах. А то будешь любоваться красивыми циферками на экране дисплея, а на самом деле все уже давно сгорело. В общем, батарея разрядилась полностью, что для знакомого, как он сказал, тогда было очень плохо.
     Схема прибора с индикаторным светодиодом показана на рисунке.

     Основой схемы являются микроконтроллер PIC16F676 и индикатор ЖКИ. Так, как все это работает исключительно в теплое время года, то индикатор и контроллер можно приобрести самые дешевые. Операционный усилитель выбран тоже соответствующий – LM358N, дешевый и имеющий диапазон рабочих температур от 0 до +70.
     Для преобразования аналоговых величин (оцифровки) напряжения и тока выбрано стабилизированное напряжение питания микроконтроллера величиной +5В. А это значит, что при десятиразрядной оцифровке аналогового сигнала каждому разряду будет соответствовать – 5В = 5000 мВ = 5000/1024 = 4,8828125 мВ. Эта величина в программе умножается на 2, и получаем — 9,765625мВ на один разряд двоичного кода. А нам надо для корректного вывода информации на экран ЖКИ, чтобы один разряд был равен 10 мВ или 0,01 В. Поэтому в схеме предусмотрены масштабирующие цепи. Для напряжения, это регулируемый делитель, состоящий из резисторов R5 и R7. Для коррекции показаний величины тока служит масштабирующий усилитель, собранный на одном из операционных усилителей микросхемы DA1 – DA1.2. Регулировка коэффициента передачи этого усилителя осуществляется с помощью резистора R3 величиной 33к. Лучше, если оба подстроечных резистора будут многооборотными. Таким образом, при использование для оцифровки напряжения величиной ровно +5 В, прямое подключение сигналов на входы микроконтроллера запрещено. Оставшийся ОУ, включенный между R5 и R7 и входом RA1, микросхемы DD1, является повторителем. Служит для уменьшения влияния на оцифровку шумов и импульсных помех, за счет стопроцентной, отрицательной, частотно независимой обратной связи. Для уменьшения шумов и помех при преобразовании величины тока, служит П образный фильтр, состоящий из С1,С2 и R4. В большинстве случаев С2 можно не устанавливать.

В качестве датчика тока, резистор R2, используется отечественный заводской шунт на 20А – 75ШСУ3-20-0,5. При токе, протекающем через шунт в 20А, на нем упадет напряжение величиной 0,075 В (по паспорту на шунт). Значит, для того, чтобы на входе контроллера было два вольта, коэффициент усиления усилителя должен быть примерно 2В/0,075 = 26. Примерно — это потому, что у нас дискретность оцифровки не 0,01 В, а 0,09765625 В. Конечно, можно применить и самодельные шунты, откорректировав коэффициент усиления усилителя DA1.2. Коэффициент усиления данного усилителя равен отношению величин резисторов R1 и R3, Кус = R3/R1.
     И так, исходя из выше сказанного, вольтметр имеет верхний предел – 50 вольт, а амперметр – 20 ампер, хотя при шунте, рассчитанном на 50 ампер, он будет измерять 50А. Так, что его можно с успехом установить в других устройствах.
     Теперь о доработке, включающей в себя добавление индикаторного светодиода. В программу были внесены небольшие изменения и теперь, пока контроллер работает, светодиод моргает с частотой примерно 2 Гц. Время свечения светодиода выбрано 25мсек, для экономии. Можно было бы вывести на дисплей моргающий курсор, но сказали, что со светодиодом нагляднее и эффектнее. Вроде все. Успехов. К.В.Ю.

Скачать “Вольтметр и амперметр на PIC16F676” Voltmetr-i-ampermetr-PIC16F676.rar – Загружено 2086 раз – 143 KB


.

Один из вариантов готового устройства, реализованного Алексеем. К сожалению фамилии не знаю. Спасибо ему за работу и фото.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:10 740


www.kondratev-v.ru

СХЕМА АМПЕРМЕТРА

   Некоторые схемы и устройства, например усилители мощности, автомобильные зарядные устройства, лабораторные источники питания, могут иметь токи, которые достигают до 20 ампер и более. Ясно, что пару ампер можно легко померять обычным дешёвым мультиметром, а как быть с 10, 15, 20 и более ампер? Ведь даже на не очень больших нагрузках встроенные в амперметры шунтирующие резисторы в течение длительного времени замера, иногда даже часов, могут перегреться и в худшем случае поплавится.

   Профессиональные инструменты для измерения больших токов, достаточно дорогие, так что имеет смысл собрать схему амперметра самому, тем более ничего тут сложного нет.

Электрическая схема мощного амперметра

   Схема, как вы можете видеть, очень простая. Её работа уже испытана многими производителями, и большинство промышленных амперметров работают таким же образом. Например, вот эта схема тоже использует данный принцип.

Рисунок платы мощного амперметра

   Особенность заключается в том, что в данном случае используется шунт (R1) с сопротивлением очень низкого значения — 0.01 Ом 1% 20W — это дает возможность рассеять совсем немного тепла.

Работа схемы амперметра

   Работа схемы довольно проста, при прохождении определенной тока через R1 будет падение напряжения на нём, его можно измерить, для этого напряжение усиливается операционным усилителем OP1 и поступает далее на выход через контакт 6 на внешний вольтметр, включенный на пределе 2V.

   Настройки будут заключаться в установке ноля на выходе амперметра при отсутствии тока, и в калибровке, сравнивая его с другим, образцовым инструментом для замера тока. Питается амперметр стабильным симметричным напряжением. Например от 2-х батареек по 9 вольт. Для измерения тока подключите датчик к линии и мультиметр в диапазоне 2V — смотрите показания. 2 вольта будет соответствовать току 20 ампер.

Испытания схемы амперметра

   С помощью мультиметра и нагрузки, например небольшой лампочки или сопротивления, мы будем измерять ток нагрузки. Подключим амперметр и получаем показания тока с помощью мультиметра. Рекомендуем выполнить несколько тестов с разными нагрузками, чтобы сравнить показания с эталонным амперметром и убедиться, что все работает правильно. Скачать файл печатной латы можете здесь.

el-shema.ru

0 comments on “Схема амперметра на микроконтроллере – 0-10 ATtiny13

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *