Схема бп atx – Cхемы компьютерных блоков питания ATX

Cхемы компьютерных блоков питания ATX

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX



Схема FSP145-60SP

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема ISO-450PP

Схема PowerMan IP-P550DJ2-0

Схема LWT 2005

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Схема блока NT-200ATX (KA3844B+LM339)

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Схемы компьютерных блоков питания ATX Codegen JNS KME FSP Sunny Colors It PowerMaster InWin PowerMan Hiper Microlab Antech MaxPower Green Tech = Электроника и Медтехника

Наименование Формат Размер, кБ
Схема блока питания LC-250 ATX ch. 200-ATX ver. 2.02B фирмы JNC Computer Co.
Основной источник: ШИМ DBL494, супервайзер LM339N, 3,3 В — A431 и магнитный стабилизатор
Источник дежурного питания +5V SB (дежурка): Высоковольтный ключ KSC5027 и стабилизатор 7805
GIF 110
Схема блока питания LC-B250ATX ch. Y-B200-ATX ver. 2.9 фирмы JNC Computer Co.
Основной: ШИМ и супервайзер 2003, 3,3 В — магнитный стабилизатор
Дежурка: Высоковольтный ключ — SSS2N60A, оптрон 1010, стабилизатор AZ431
GIF 103
Схема блоков питания 200XA1 и 250XA1 ch. CG-07A и CG-11 фирмы Codegen
Основной: ШИМ KA7500B, супервайзер A6393D или KIA393P, 3,3 В — отдельный выпрямитель
Дежурка: Высоковольтный ключ и стабилизатор 7805
GIF 103
Схема источника +5V SB блока питания SY-300ATX ch. Y-B2002 ATX ver 1,0
Основной:
Дежурка: Высоковольтный ключ — BV-1 501, оптрон 817, стабилизатор 431
GIF 30
Схема источника +5V SB блока питания KME PX-230W ATX ch. KME-08-3A1
Основной:
Дежурка: Высоковольтный ключ — 2SC5353, стабилизатор 7805
GIF 24
Схема платы RD-DW-P009B источника +5V SB блока питания EN-8156901 model SFX-2015 (150W)
Основной:
Дежурка: Высоковольтный ключ — TFK617 BUF640, оптрон PC817, стабилизатор 431P
GIF 21
Схема источника +5V SB блока питания 300X ch. CG-13c фирмы Codegen
Основной:
Дежурка: Высоковольтный ключ — SSS2N60B, оптрон PC817, стабилизатор TL431-A
GIF 72
Статья о ремонте компьютерных блоков питания ATX (Ver.1.0) HTML 18
Транзисторы, применяемые в компьютерных блоках питания HTML 28
Микросхемы, применяемые в компьютерных блоках питания HTML 23
Импульсные блоки питания для IBM PC
В книге рассматриваются вопросы схемотехники, принципа работы, методика диагностики и ремонта компьютерных источников питания ATX
DJVU 2910
Блоки питания для системных модулей IBM PC XT AT
В книге освещаются вопросы схемотехники, принципа работы компьютерных источников питания на микросхеме TL494. Особое внимание уделяется вопросам поиска неисправностей и регулировке компьютерных блоков питания.
DJVU 900
Источники питания ПК и периферии (часть 1)
Подробно разобраны принципы работы отдельных узлов источников питания, алгоритмы и методики поиска неисправностей, типовые неисправности блоков питания компьютеров, мониторов и др. Рассматриваются вопросы построения качественных и энергоэффективных систем электропитания вычислительной техники.
RAR+DJVU 4000
Источники питания ПК и периферии (часть 2) RAR+DJVU 4000
Источники питания ПК и периферии (часть 3) RAR+DJVU 3627
Статья о методике доработки компьютерных блоков питания ATX, модернизация, повышение надежности, способы снижения помех и пульсаций HTML 25
Схемы блоков питания ATX
Классическая схема блока питания ATX на TL494 и LM393, использованная фирмой Rolsen
Основной: ШИМ TL494, супервайзер LM393, 3,3 В — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 7805
GIF 57
Схема PowerMaster модель LP-8 v. 2.03 230W (AP-5-E v. 1.1), и FA-5-2 PCB FA_5-F v. 3.2
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 159
Схема PowerMaster FA-5-2 v. 3.2 250W
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, оптрон PC817, стабилизатор TL431
GIF 158
Схема блока питания ATX фирмы Microlab мощностью 350W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 44
Схема БП Microlab ATX-5400X мощностью 400W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 43
Схема SevenTeam ST-200HRK
Основной: ШИМ UTC51494, супервайзер LM339, 3,3 V формируется на отдельной плате ST-DD33 A60320 из источника +12V: ШИМ UC3843AN, полевой ключ 2SK1388
Дежурка: Высоковольтный ключ — 2SC4020, стабилизатор MC78L05ACP
GIF 184
Схема DTK PTP-2038 мощностью 250 Вт
Основной: ШИМ TL494, супервайзер LM393, 3,3 V — TL431C и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
PNG 25
Схема Codegen ATX300W мощностью 300 Вт
Основной: ШИМ KA7500B, супервайзер на дискретных транзисторах, 3,3 V линейный параметрический стабилизатор на 40N03P и TL431
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон 817B, стабилизатор TL431
GIF 229
Схема блока питания 330U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — стабилизатор линейный параметрический на полевике 7030
Дежурка: Высоковольтный ключ — полевой SSS2N60, ШИМ на TDA865, оптрон PC817B
GIF 319
Схема блока питания 350T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK2648, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 350U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи MJE13009, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 400T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK1940, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 400U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи 2SC2625, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 500T фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 64
Схема блока питания 600T фирмы Nuitek (COLORS iT)
Основной: ШИМ на UC3843, супервайзер — WT7525, силовые ключи 2SK2082, оптрон PC817, 3,3 V на источнике опорного напряжения TL431, регуляторе 2SB772, магнитный стабилизатор на дросселе
Дежурка: ШИМ и высоковольтный ключ на ICE3B0365, оптрон KPC817, источник опорного напряжения TL431
PDF 49
Схема FSP145-60SP от Fortron Source
Основной: ШИМ и супервайзер на KA3511 на отдельной плате, 3,3 V — KA431 и магнитный стабилизатор
Дежурка: ШИМ с высоковольтным ключом на KA1H0165R, оптрон 817, стабилизатор KA431
GIF 48
Схема БП ATX-200W, ATX-250W, ATX-300W от Alim
Основной: ШИМ на TL494C, супервайзер на дискретных элементах, 3,3 V — источник опорного напряжения на TL431, регулятор 2SA1015 и магнитный стабилизатор на дросселе
Дежурка: Преобразователь на высоковольтном ключе на 2SC3150, стабилизатор 7805
PDF 395
Схема InWin IW-ISP300A3-1 PowerMan с корректором фактора мощности
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор, noise killer (регулятор скорости вращения вентилятора) на отдельной плате GDD-002 на LM358
Дежурка: Высоковольтный ключ — полевой 02N60P, оптрон PC817C
GIF 218
Схема InWin IW-P300A2-0 R1.2
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B или SPU02N60P, оптрон CT324 или EL817
GIF 51
Схема Sirtec HPC-360-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817BY
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x FQP9N50
PDF 176
Схема Sirtec HPC-420-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x SPP11N60C3
PDF 182
Схема БП Delta Electronics DPS-200PB-59
Основной: ШИМ TL494, супервайзер на отдельной платеLM339D, 3,3 V на отдельной плате A431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
GIF 236
Схема БП Delta Electronics DPS-260-2A c активным корректором фактора мощности, схемотехнически необычная, достаточно высокого уровня качества
Основной: ШИМ и АКФМ на отдельной плате DC-988 2960095601 на NE556 и ML4824-1, супервайзер на отдельной плате DC-989 2960095700 на LM339D, 2-х LM358 и TL431, однотактный инвертор на полевом ключе 2SK2611, 3,3 V на отдельной плате DC-986 2960095401 TL431 и магнитный стабилизатор
Дежурка: ШИМ + высоковольтный полевой ключ — TOP200, стабилизатор PQ05RF11
АКФМ: Высоковольтный ключ — полевой 2 x IRFP450
RAR+GIF 454
Фирменная схема JNC SY-300ATX на микросхеме AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, KSC5027-1, или BV-1 501 в корпусе TO-126, оптрон 817, стабилизатор 431
PDF 55
Фирменная схема JNC LC-B250ATX на микросхеме 2003
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме 2003, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B, оптрон 817, стабилизатор 431
GIF 53
Схема БП фирмы JNC
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор MC7805
GIF 123
Фирменная схема блока питания KME PM-230W
Основной: ШИМ TL494, супервайзер LM393, 3,3 V линейный параметрический стабилизатор на STP40NE03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор PJ7805
GIF 63
Фирменная оригинальная схема Sunny ATX-230. Схема сильно отличается от других блоков питания!
Основной: ШИМ однотактный на UC3843, высоковольтный ключ — 2SK2545, оптрон TCET1109, стабилизатор TL431, супервайзер TPS5510P, цепь стабилизации напряжения питания ШИМ включает оптрон 817C, управляет которым супервайзер, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P3020L и TL431
Дежурка: Высоковольтный ключ — полевой 2SK3067, оптрон 817C, стабилизатор TL431
GIF 53
Фирменная схема Shido ATX-250W LP-6100
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — отдельный выпрямитель
Дежурка: Высоковольтный ключ — 2SC3150, оптрон 817, стабилизатор TL431
PNG 37
Схема PowerLink LPJ2-18 мощностью 300W
Основной: ШИМ и супервайзер на LPG-899, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон 817, стабилизатор 431
GIF 54
Схема Maxpower PX-300W
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NF03
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 51
Вариант схемы на SG6105 мощностью 250 Вт
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NE0
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 47
Схема блока питания AcBel API4PC01 мощностью 400W
Основной: без номиналов
Дежурка: без номиналов
PNG 96
Схема блока питания AcBel API3PCD2 ATX-450P-DNSS мощностью 450W
Основной: без номиналов
Дежурка: без номиналов
PNG 46
Схема БП Green Tech MAV-300W-P4
Основной: ШИМ TL494, супервайзер WT7510, 3,3 V линейный параметрический стабилизатор на полевом транзисторе P45N03L
Дежурка: Высоковольтный полевой ключ — PFB2N60, оптрон COSMO1010, стабилизатор TL431
GIF 203
Схема БП ATX-300P4 PFC ATX-310T v. 2.03. Корректор фактора питания пассивный
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3866, оптрон ???, стабилизатор TL431
PNG 37
Схема БП ShenZhon мощностью 350 Вт на микросхеме — супервайзере AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, оптрон 817, стабилизатор 431
PNG 332
Схема серии БП фирмы Linkworld мощностью 200W, 250W и 300W
Основной: ШИМ TL494C, супервайзер ???, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3150, оптрон ???, стабилизатор 7805
PDF 395
ШИМ и высоковольтные полевые ключи БП Hiper HPU-4K580
Основной: ШИМ TL3842P, однотактный инвертор на 2-х полевых ключах 2SK2607
Дежурка:
PNG 136
Часть схемы БП IP-P350AJ2-0 мощностью 350 Вт, включающая источник дежурного напряжения +5VSB
Основной: ШИМ AIC3843, супервайзер WT751002, 2 оптрона 817, однотактный инвертор на полевом ключе W12NK90Z
Дежурка: ШИМ и высоковольтный ключ — ICE2A0565Z, оптрон 817, стабилизатор TL431
PNG 24
Фрагмент схемы блока питания ATX Enlight HPC-250 и HPC-350
Основной: ШИМ TL494C, супервайзер LM339, опорное — TL431
Дежурка:
GIF 266
Источник дежурного напряжения +5VSB Codegen-300W model 300X v2.03
Основной:
Дежурка: ШИМ и высоковольтный ключ — 5H0165R, оптрон LF311
GIF 40
Источник дежурного напряжения +5VSB Espada KPY-350ATX
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP ATX-300GTF
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP600 Epsilon FX600 GLN
Основной:
Дежурка: ШИМ и высоковольтный ключ — FSDM0265R, оптрон PC817, стабилизатор TL431
PNG 66
Часть схемы БП LEC971 мощностью 250 Вт, включающая источник дежурного напряжения +5VSB
Основной:
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 29
Еще одна схема БП ATX
Основной: ШИМ TL494
Дежурка:
BMP 391
Схемы блоков питания AT
Схема БП на TL494 и LM339 мощностью 200W GIF 44
Схема на TL494, KA34063F и LM393 GIF 369
Схема на mPC494C и HA17339 GIF 71
Схема на TL494C PNG 70
Схема на DBL494 PNG 177
Схема на TL494C и LM339 PNG 72
Схема Sunny CWT9200C-1 на KA7500(TL494) PNG 50
Схема Enermax мощностью 200W GIF 51
Схема AUVA VIP P200B мощностью 200W без номиналов PNG 45
Схема PE-050187 от Power Efficiency Electronic Co Ltd без номиналов PNG 51
Схема на mPC494C GIF 89
Еще одна схема БП AT GIF 65
Схема БП мощностью 200W PNG 36
Схема БП мощностью 200W без номиналов GIF 33
Схема БП без номиналов GIF 33
Схема БП без номиналов GIF 135
Еще одна схема БП без номиналов GIF 31

electro-tech.narod.ru

Схемотехника ATX (AT) БП на TL494, KA7500

AT 200W TL494

 

ATX Shido 250W, TL494

Microlab 400W, KA7500B

ATX, IC= TL494

230W Key Mouse Elekctronic

PC SMPS AT, cca 200W

old AT, cca 200W

Sunny Technologies AT 200W

Codegen ATX 250W — 250XA1

Seven Team ST-230WHF 230W

JNC Computer LC-250ATX

SevenTeam ATX2V2 with TL494

PowerMaster FA-5-2, 250W

PowerMaster LP-8, 230W

SevenTeam ST-200HRK 200W

Green Tech MAV-300W-P4

DTK-PTP-2038 200W ATX

Codegen Atx 300W

ATX LWT2005 china, KA7500B

Delta DPS-200PB-59 H

Alim ATX 250W SMEV J.M 2002

ATX (базовая схема)

Power Efficiency electronic PE-050187

AT UK5-15A

unknown AT

Wintech PC WIN-235PE

MaxPower ATX PX-230W

DTK Computer PTP-2007 Macron

PC ATX EC Model 200X

ATX-300P4-PFC (passive PFC)

 

easyradio.ru

Схемотехника ATX (AT) БП на TL494, KA7500

Originally published at Свободный эфир. You can comment here or there.

AT 200W TL494

 

ATX Shido 250W, TL494

Microlab 400W, KA7500B

ATX, IC= TL494

230W Key Mouse Elekctronic

PC SMPS AT, cca 200W

old AT, cca 200W

Sunny Technologies AT 200W

Codegen ATX 250W — 250XA1

Seven Team ST-230WHF 230W

JNC Computer LC-250ATX

SevenTeam ATX2V2 with TL494

PowerMaster FA-5-2, 250W

PowerMaster LP-8, 230W

SevenTeam ST-200HRK 200W

Green Tech MAV-300W-P4

DTK-PTP-2038 200W ATX

Codegen Atx 300W

ATX LWT2005 china, KA7500B

Delta DPS-200PB-59 H

Alim ATX 250W SMEV J.M 2002

ATX (базовая схема)

Power Efficiency electronic PE-050187

AT UK5-15A

unknown AT

Wintech PC WIN-235PE

MaxPower ATX PX-230W

DTK Computer PTP-2007 Macron

PC ATX EC Model 200X

ATX-300P4-PFC (passive PFC)

 

pirate-radio-ru.livejournal.com

Блок питания ATX-400W — стандартная принципиальная схема


Блок питания ATX-400W — принципиальная схема

Блок питания ATX-400W — принципиальная схема электрическая компьютерного блока питания ATX-400W. Это отличный выбор, если создается домашняя или офисная система с низкими требованиями к питанию, но с высокой совместимостью и надежностью.

Для увеличения кликните по картинке

Схемы блока питания компьютера

usilitelstabo.ru

ATX блоки питания компьютеров: схемы и устройство | Ремонт компьютеров Троещина на дому: компьютерная помощь, диагностика компьютера на Троещине

Производя ремонт компьютеров очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты.

Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера. Не зависимо от производителя и цены, устройство и принцип работы блока питания ATX неизменны. Схематически устройство блока питания компьютера можно разделить на:

  • Входную цепь (1)
  • Сетевой выпрямитель (2)
  • Автогенераторный источник питания (3)
  • Силовой каскад (4)
  • Вторичные выпрямители (5)

Внутреннее устройство блока питания ATX

Входная цепь состоит из сетевого фильтра гасящего помехи в сети от работы БП. Сетевой выпрямитель блока питания компьютера включает в себя диодную сборку (мост) и выпрямительные конденсаторы. Автогенераторный источник питания работает когда компьютер выключен (не из сети, разумеется, а кнопкой Power) он подает дежурное напряжение питания +5VStb на контроллеры материнской платы. На силовой каскад  от выпрямителя подается напряжение +310В. Транзисторы силового каскада блока питания ATX работают по двутактной схеме совместно с силовым трансформатором и управляются микросхемой ШИМ. Со вторичных обмоток силового трансформатора напряжение подается на вторичные низковольтные выпрямители. Микросхема ШИМ запускается по сигналу от материнской платы «Power On» запуская, соответственно, транзисторно-трансформаторный преобразователь и подавая  напряжения на его вторичные обмотки. Во вторичных обмотках блока питания компьютера, кроме диодных сборок (на радиаторах) задействованы дроссели.

Схема блока питания компьютера (кликните для увеличения).

 

Блок питания компьютера является импульсным устройством. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Сетевое напряжение 220в поступает через сетевой фильтр на выпрямитель состоящий из диодов и двух последовательно соединенных электролитических конденсаторов. Так же запитывается автогенераторный источник питания формирующий дежурное напряжение +5v stb. С выпрямителя, напряжение величиной 310в поступает на силовой каскад реализованный на мощных транзисторных ключах и трансформаторе. Силовой каскад управляется импульсами поступающими от микросхемы-генератора ШИМ (Широтно Импульсная Модуляция) через согласующий трансформатор на базы ключей. Генерируемое импульсное напряжение снимается со вторичных обмоток силового трансформатора, выпрямляется диодами и конденсаторами. Величина выходного напряжения контролируется специальной схемой защиты, которая формирует сигнал Power-Ok (Power-Good). В случае отклонения выходных напряжений от номиналов сигнал Power-Ok не подается на контроллер материнской платы, тем самым блокируя запуск компьютера.

 

PowerMaster_230W

PowerMaster_250W

Maxpower_PX-300W

jnc

dtk_ptp-2038

colors_it_330

codegen_atx_300w

Codegen-330w

Gembird-350W

Распиновка разъемов ATX блока питания компьютера

                    Распиновка разъемов блока питания ATX

Ремонт блоков питания компьютеров следует начинать с проверки подачи сетевого напряжения ~220в на выпрямитель. Далее, необходимо проконтролировать наличие +310в на выходе выпрямителя (не забывайте, что конденсаторы выпрямителя блока питания компьютера включены последовательно и напряжение на их выводах будет составлять приблизительно по 150-160в). Удостоверьтесь в наличии напряжений +5v stb и Power-Ok (розовый и зеленый провода). Если они отсутствуют следует проверить автогенераторный источник питания дежурного режима и микросхему ШИМ (если нет напряжения Power-Ok). Если генерация дежурного напряжения +5v stb и Power-Ok в норме, сосредоточьте свое внимание на силовых ключах и вторичном выпрямителе блока питания. Не забывайте, что для проверки полупроводников и конденсаторов их лучше выпаять из схемы.

computerrepair.com.ua

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

 

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

 

 

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

 

По пунктам:

 

  1. Перерезать дорожку идущую от канала 5В к 2-й ноге м/с и её обвязке и соединить её с +5VSB.

  2. выпаять всю обвязку 1-й и 3-й ноги м/с.
  3. выпаять детали через которые 4-я нога была связана с -5В и -12В, остальные трогать НЕ НАДО.
  4. выпаять детали делителя на 16-й ноге (все резисторы которые к ней подходят)
  5. Если будете оставлять канал 5В (зачем может пригодиться скажу далее), замените нагрузочный резистор на выходе этого канала с 10Ом на 15Ом аналогичного размера (мощности). Ибо после переделки там будет уже 6В и ему станет слишком жарко J
  6. Теперь можно демонтировать все детали каналов 3,3В -5В и -12В, а также и 5В если вы его решите не оставлять.
  7. Также выпаять все провода выходящие из БП кроме 3-х черных и 3-х желтых.

 

Стадия разрушения на этом окончена, пора переходить к созиданию.

 

  1. Согласно схеме на Рис.1 смонтировать делитель для 1-й и 3-й ноги м/с из резисторов R1, R3 и R2. Я это сделал в свободных дырках оставшихся от удаленных деталей. Теперь защита будет «довольна» и не будет нам мешать. Вот так это выглядело на этом этапе:

  2. Замкнуть 9-ю ногу м/с на землю или сделать это через выключатель если сетевого нет или вам его недостаточно. Это действие обеспечивает запуск БП (а теперь, без 5 минут, зарядного), PS-ON — так сказать.

  3. Далее (на схеме не обозначено), но очень рекомендую нагрузить канал 12В хотя бы на 0,5А. Чем угодно – лампочкой, резисторами или и тем и другим одновременно. Это нужно для адекватной работы БП на холостом ходу (хотя слабенькие БП, типа этого, могут обойтись штатным нагрузочным резистором).
  4. Теперь восстанавливаем делитель на 16-й ноге (R4, R6 и R12 по схеме).
  5. Включаем БП (лучше через лампочку на 60-100Вт вместо предохранителя) и меряем напряжение в бывшем 12В канале. Если необходимо подбираем резистор R12 до получения 14,35-14,4В (ну или ещё большего если вам покажется мало, хотя я считаю именно это значение наиболее правильным). Кроме того, можно установить регулятор. Делается это так: сначала подбором R6 добиваемся 13,5-14В на выходе, затем последовательно с ним ставим переменный резистор на 10кОм. Он обеспечит вам регулировку выходного напряжения от 13,5-14 до 14,9-15,4В. Этого диапазона должно хватить для аккумулятора в любом состоянии.

 

По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там — около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

 

В итоге, что мы имеем?

 

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

 

 

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

 

План действий:

  1. Выпаиваем всё, что обведено или зачеркнуто на схеме Рис.3 розовым, и все провода. Должно получиться примерно так:

  2. Резистор R42 (по схеме, у вас может оказаться другим номером, так что будьте внимательны) заменяем на 10-11кОм. Включаем БП (желательно через лампу на 60-100Вт, на всякий случай) и меряем напряжение на выходе. Обратите внимание: БП должен запуститься сам, замыкать 4-ю ногу ШИМ на землю НЕ НАДО. Если вы это сделаете, то отключите защиту по току и при КЗ на выходе сможете наблюдать вылет силовых транзисторов и других элементов блока питания. Если напряжение не 14,35-14,45В, то подбором резисторов R44, R45 добиваетесь чтоб оно было в указанном диапазоне. Если этого недостаточно можно не сильно изменить и R42.

    В принципе на этом можете и закончить. Нет? Ааа…, вам нужно ограничение максимального зарядного тока как в варианте 1? Тогда продолжим.

    Изображен только фрагмен изменений в обвязке ШИМ. Это не значит что всё остальное вокруг него надо выпаять.
  3. В ШИМ TL494 имеется два встроенных усилителя ошибки, в данной схеме один из них не использовался, его мы и задействуем для ограничения максимального зарядного тока. Отключаем 15-ю ногу ШИМ от 13-й и 14-й, а16-ю ногу от земли. Можете дорожки перерезать, можете просто их отдельно выпаять, как вам нравится короче. Затем монтируем цепь из R5, C1, R7, R8, R9, R6 по схеме на Рис.4. При указанных номиналах БП больше 5А давать отказывается. При достижении порога, как и в первом случае, начинает падать выходное напряжение. Правда, есть и отличия, в данном варианте падение будет гораздо более резким. Фактически больше заданного тока, он не даст ни при каких обстоятельствах, напряжение упадет хоть до 0 (ну или почти). В то время, как в первом варианте, при достижении заданного порога напряжение снижается более плавно и не станет менее 2,5-3В даже если управляющий транзистор КТ361 откроется совсем. Но, вернемся к данной схеме. В режиме ограничения максимального тока возможно появление сверчков, убиваются подбором R5 и С1. Роль шунта (резистор R6 на схеме) на 0,005Ом у меня выполнял кусок медной проволоки длиной 2,5см, из телефонного кабеля. Изменение порога ограничения максимального тока достигается изменением номинала резистора R9 или R6. И предвосхищая вопрос: «зачем нужен R7?». Отвечу: «Не помню» J, очевидно что при разработке различных вариантов во время проектирования он был нужен в каком то из них. Но потом схема изменилась и теперь он, судя по всему, не играет никакой роли и вместо него можно ставить перемычку. Вот результат работы, испытание заряда реального аккумулятора от UPS, 12В 7А/ч.  

       Напряжение 14,4В ток 0,44А. Пусть вас цифры тока не удивляют, он разряжен был не сильно.
  4. Вентилятор, как и в предыдущем случае, к бывшему каналу 5В. На провода крокодилы, землю платы заизолировать от корпуса. Защита от переполюсовки — аналогична. От КЗ щупов прекрасно защищает оставшаяся нетронутой штатная защита. Проверено неоднократно.

 

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

 

Итак: наша следующая «жертва» — БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит — с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Далее собираем схему по Рис.5.

Чтобы не пугать вентилятор напряжением в 14,4В — собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь — иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо.

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

 

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

 

Вот готовая продукция:

 

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

 

Тогда позвольте представить:

 

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

 

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное — компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

 

 

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но…  для нас — несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

 

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

 

А это внутренности блока в сборе и внешний вид:

 

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они — мерцают. В остальном — всё нормально.

Индикация выглядит так:

 

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так — совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

 

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец — очаровательная серая киска Маркиза.

 

www.radiokot.ru

0 comments on “Схема бп atx – Cхемы компьютерных блоков питания ATX

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *