Схема электронного предохранителя – Как сделать электронный предохранитель своими руками

Как сделать электронный предохранитель своими руками

Р/л технология

Главная  Радиолюбителю  Р/л технология



Было бы преступлением не упомянуть здесь плавкие предохранители. Как и другие типы предохранительных устройств они призваны защищать участок цепи от губительных перепадов питающего тока.

Плавкие предохранители

Отличительная особенность таких предохранителей — их очевидная простота. Устройство представляет собой не что иное, как участок проволоки небольшого диаметра. Последняя легко плавится при превышении силы тока сверх заданного порога.

Конечно, у такого метода защиты есть очевидный недостаток – время реакции (плавление проволоки не происходит мгновенно). То есть от кратковременных, но от этого не менее губительных, импульсов тока он не спасет. Зато он очень эффективен при коротких замыканиях в сети или при превышении допустимой нагрузки.

Принцип работы основывается на тепловой работе, которую совершает ток при прохождении через проводники (и напряжение здесь не имеет особого значения).

Расчет:

Сила тока = Максимально допустимая мощность цепи / Напряжение

То есть максимальная сила тока, которую должен выдерживать плавкий предохранитель в цепи питания 220 В при максимальной нагрузке в 3 кВт – около 15 А.

Ввиду того, что плавкость зависит от множества факторов (диаметр проволоки, теплоотводящая способность окружающей среды, материал, из которого изготовлена проволока, и т.п.), то чаще всего сгоревший элемент меняют согласно готовым расчетам из таблицы ниже (для наиболее популярных металлов).

Таблица 1

Предохранители на реле

Как и было сказано выше, плавкие предохранители имеют серьезный недостаток – время реакции. Кроме того, сгоревший элемент необходимо полностью менять (требуется замена проволоки или всего предохранителя).

В качестве альтернативы можно рассмотреть реле.

Один из примеров реализации такой схемы ниже.

Рис. 1. Схема реле

При коротком замыкании в питаемой цепи резко возрастает ток, вследствие чего составной транзистор (VT1 VT2) запирается и всё напряжение прикладывается к первому реле, которое, в результате срабатывания, размыкает второе реле и ток остается только на закрытом составном транзисторе.

Обозначенный блок рассчитан только на цепи, ток питания которых не превышает 1,6А, что может быть неудобно для разных задач.

Её можно немного переделать так.

Рис. 2. Переделанная схема реле

Номинал R4 не прописан специально, так как он требует расчета в зависимости от параметров питаемой цепи.

В качестве основы можно использовать готовые показатели в таблице ниже.

Таблица 2

R4, Ом

1,6

0,82

0,6

0,39

0,22

Сила тока срабатывания предохранителя, А

0,9

1,3

1,7

2,0

2,4

Обе приведенные схемы рассчитаны на работу только в цепях питания 12 В.

Электронные предохранители без реле

Если ваша схема питается током до 5 А и напряжением до 25 В, то вам определенно понравится схема ниже. Порог срабатывания может быть настроен подстроечным резистором, а время реакции можно задать с помощью конденсатора.

Рис. 3. Схема предохранителя без реле

Ввиду того, что под постоянной нагрузкой транзистор может греться, его лучше всего разместить на теплоотводе.

В качестве альтернативной реализации, но с тем же принципом.

Рис. 4. Схема предохранителя без реле

Еще более простой электронный предохранитель с минимумом деталей на схеме ниже.

Рис. 5. Схема электронного предохранителя с минимумом деталей

При возникновении короткого замыкания транзистор блокируется на непродолжительное время. Если блокировка будет снята, а короткое замыкание останется, то «предохранитель» снова сработает и так до тех пор, пока в питаемой цепи не будет устранена проблема. То есть такой предохранитель не требует включения или выключения. Единственный его недостаток – постоянное включение прямой нагрузки в цепи в виде резистора R3.

Электронный предохранитель для 220 В

Схемы электронных предохранителей, приведенные выше, могут работать только в цепях с постоянным питанием. Но что, если вам нужен быстродействующий предохранитель для защиты питания в цепях с переменным током 220 В?

Можно использовать схему блока защиты от перегрузок ниже.

Рис. 6. Схема блока защиты от перегрузок

Максимальный ток срабатывания этой схемы, выполненной на стабилизаторе 7906 – 2А.

T1 – транзистор TIC225M, а

T2 — BTA12-600CW (замена не допустима).

В качестве более простых альтернатив для цепей с переменным током могут выступать следующие.

Рис. 7. Схемы для цепей с переменным током

Автор: RadioRadar

Дата публикации: 09.03.2018

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Электронный предохранитель для блока питания


Здравствуйте друзья Самоделкины! У многих из вас есть наверное блок питания для подключения к различным электронным устройствам. Но не все блоки защищены от перегрузки и короткого замыкания. Я предлагаю вашему вниманию самоделку, которая защитит ваш блок от этих неприятностей. Вот схема электронного предохранителя

Я нашел ее в интернете. Немного о работе этого предохранителя. Устройство предназначено для бесконтактного аварийного отключения питания от электронного прибора при токах, превышающих определенное значение. Для этих целей ставятся обычно плавкие предохранители, но быстродействие их таково, что сначала выгорает вся электроника и лишь потом сгорает предохранитель. Электронный же предохранитель отключает нагрузку гораздо быстрее и вероятность повреждения от перенапряжения, или непредвиденного повышения тока потребления резко сокращается.

Главным элементом схемы является транзистор VT2, который в нормальном состоянии открыт и падение напряжения на нем минимально. Светодиод VD1 погашен. При увеличении потребляемого тока падение напряжения на транзисторе увеличивается, и начинает открывать транзистор VT1. В результате этого процесса транзистор VT1 быстро открывается, а VT2 – закрывается, и отключает нагрузку от источника питания. При этом загорается индикатор перегрузки светодиод VD1. При устранении короткого замыкания, или же отключении нагрузки от электронного предохранителя, работоспособность устройства восстанавливается.

Подключается предохранитель между выходом блока питания и нагрузкой. Все это показано на схеме. Для сборки этого устройства нам понадобятся следующие детали и инструменты


1 – монтажная или печатная плата небольшого размера, например , 5 на 5 см; транзистор КТ817; транзистор КТ315; светодиод АЛ 307в, желательно красный; резисторы МЛТ 0,25 вт 360 ом; 0,125 вт 1,5 ком; 0,5 вт 91 ом; 0,25 вт 450 ом; монтажные провода. 2 – паяльник; припой; пинцет; кусачки; пассатижи; мультиметр; автомобильная лампа 12 в на 21 вт– для подключения ее вместо нагрузки. Собираем следующим образом.

Шаг 1. Проверяем все детали при помощи мультиметра, так как среди них есть и Б/У






Шаг 2. Спаиваем всю схему на монтажной плате. Проверяем правильность сборки схемы

Шаг 3. Подключаем собранное устройство к выходу блока питания согласно схеме, а к выходу предохранителя подключаем нагрузку, например, автомобильную лампу 12 в 21 вт. При указанных номиналах устройство срабатывает при токе 1А и напряжении питания 9В.

Для изменения характеристик предохранителя номиналы резисторов R3 и R4 придется пересчитать по приведенным ниже формулам.

R3= Uвх *Вст/Iн. maх,

где Uвх –входное напряжение в вольтах; В ст. –статический коэффициент передачи тока транзистора VT2 ; I н.maх – ток нагрузки максимальный в амперах.

R4 при токах до 1,5 А рассчитывается из условия: R4 = 0,05* Uвх( ком). При токах 1,5А— 10А , R4= 0,02* Uвх .(ком).

Шаг 4 . Проверяем работу электронного предохранителя. Для этого на выход предохранителя подключаем автомобильную лампу 12 в 21 вт с током потребления более 1- 1,5 А. Так как предохранитель рассчитан на срабатывание при токе 1А, то лампа тут же погаснет, и загорится индикатор перегрузки светодиод VD1. В таком состоянии предохранитель будет находиться сколько угодно времени, пока не будет отключена нагрузка (лампа) от его выхода. После отключения нагрузки, работа устройства восстанавливается автоматически. Это говорит о том, что схема работает. При минимуме деталей предохранитель работает довольно – таки не плохо, и лампа цела, и блок питания не сгорел.

Вот вроде бы и все.
Желаю всем вам удачи в создании своих самоделок.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

6. Электронные предохранители и ограничители постоянного и переменного тока

Ощутимым недостатком плавких предохранителей является их одноразовость, необходимость последующей ручной замены на другой предохранитель, рассчитанный на тот же ток защиты. Зачастую, когда под рукой нет подходящего, используют предохранители на другой ток или более того, ставят самодельные (суррогатные) предохранители или просто массивные перемычки, что крайне негативно отражается на надежности работы аппаратуры и небезопасно в пожарном отношении.
Обеспечить автоматическую многоразовую защиту устройства и одновременно повысить ее быстродействие можно за счет использования электронных предохранителей. Эти устройства можно подразделить на два основных класса: первые из них самовосстанавливают цепь питания после устранения причин аварии, вторые — только после вмешательства человека. Известны также устройства с пассивной защитой — при аварийном режиме они только индицируют световым или звуковым сигналом о наличии опасной ситуации.

Для защиты радиоэлектронных устройств от перегрузок по току обычно используют резистивные или полупроводниковые датчики тока, включенные последовательно в цепь нагрузки. Как только падение напряжения на датчике тока превысит заданный уровень, срабатывает защитное устройство, отключающее нагрузку от источника питания. Преимуществом такого способа защиты является то, что величину тока срабатывания защиты можно легко изменять. Чаще всего этого достигают с помощью датчика тока.
Другим эффективным методом защиты нагрузки является ограничение величины предельного тока через нее. Даже при наличии в цепи нагрузки короткого замыкания ток ни при каких обстоятельствах не сможет превысить заданный уровень и повредить нагрузку. Для ограничения предельного тока нагрузки используют генераторы стабильного тока.
Схемы простой автоматической защиты радиоэлектронных устройств от перегрузок по току представлены на рис. 5.1 и 5.2 [5.1]. Работа устройств такого типа (стабилизатор тока на основе полевого транзистора) подробно рассматривалась ранее в главе 5 (книга 2). Ток нагрузки при использовании такого ограничителя не сможет превысить начального тока стока полевого транзистора. Величину этого тока можно задавать подбором типа транзистора, например, для приведенного на схеме транзистора типа КП302В максимальный ток через нагрузку не превысит значения 30…50 мА. Увеличить значение этого тока можно параллельным включением нескольких транзисторов.

Рис. 5.1. Ограничение предельного тока нагрузки при помощи полевого транзистора


Рис. 5.2. Транзисторный ограничитель предельного тока через нагрузку

В ограничителе тока нагрузки (рис. 5.2) работают обычные биполярные транзисторы с коэффициентом передачи по току не менее 80… 100. Входное напряжение через резистор R1 поступает на базу транзистора VT1 и открывает его. Транзистор работает в режиме насыщения, поэтому большая часть входного напряжения поступает на выход источника питания. При токе меньше порогового транзистор VT2 закрыт, и светодиод HL1 не горит. Резистор R3 выполняет роль датчика тока. Как только падение напряжения на нем превысит порог открывания транзистора VT2, он
откроется, включится светодиод HL1, а транзистор VT1, напротив, начнет закрываться, и ток через нагрузку ограничится.
При указанных на схеме номиналах элементов ток короткого замыкания равен (0,7 В)/(3,6 Ом)=0,2…0,23 А.


Рис. 5.3. Схема электронного предохранителя на полевом транзисторе VT1


Рис. 5.4. Вариант электронного предохранителя на полевом транзисторе

Электронные предохранители [5.2] можно выполнить с использованием мощного полевого транзистора VT1 в качестве ключа (рис. 5.3 и 5.4). Ток срабатывания защиты определяется соотношением резистивных элементов и зависит, в первую очередь, от величины сопротивления датчика тока, включенного последовательно с полевым транзистором.
После срабатывания защиты для повторного подключения нагрузки необходимо нажать кнопку SA1.
Стаиилизатор (рис. 5.5) позволяет получить на выходе регулируемое в пределах от 0 до 17 Б стабильное напряжение [5.3]. Для защиты стабилизатора от короткого замыкания и превышения тока в нагрузке использован тиристор VS1 с датчиком тока на резисторе R2. При увеличении тока в нагрузке включается тиристор, шунтируя цепь управления транзистора VT1, после чего напряжение на выходе падает до нуля. Светодиод HL1 индицирует факт срабатывания защиты. Для повторного запуска стабилизатора после устранения причин перегрузки следует нажать кнопку SB1 и разблокировать тиристор.


Рис. 5.5. Схема стабилизатора напряжения с защитой

Ток защиты в зависимости от величины сопротивления датика тока — резистора R2 — может быть установлен от 20.. .30 мА о 1…2 А. Например, при R2=36 Ом ток срабатывания — 30 мА; ри R2=4 Ом — 0,5 А.
В качестве транзистора VT1 можно использовать КТ815, Т801, КТ807 и др., VT2 — П702, КТ802 — КТ805 (с радиатором).
Схема источника питания со звуковым сигнализатором пре->!шения потребляемого тока [5.4] показана на рис. 5.6. Выпря-итель на диодах VD1 — VD4 питается от трансформатора, оричная обмотка которого рассчитана на напряжение 18 6 при же нагрузки не менее 1 А. Регулируемый стабилизатор напря-эния выполнен на транзисторах VT2 — VT5 по известной схеме, этенциометром R7 на выходе стабилизатора может быть уставлено напряжение от 0 до +15 В.

Сигнализатор, обозначенный на схеме устройства как ЗГ (звуковой генератор), представляет собой генератор звуковой частоты с подключенным к нему акустическим излучателем, например, динамической головкой. Для управления работой звукового генератора использован ключ на транзисторе VT1.

Рис. 5.6. Схема стабилизатора напряжения со звуковой индикацией перегрузки

При работе стабилизатора ток нагрузки проходит через датчик тока R1, создавая на нем падение напряжения. Пока ток небольшой (при указанной на схеме величине этого резистора не более 0,3 А), транзистор VT1 закрыт. По мере роста тока потребления и, соответственно, увеличения напряжения на резисторе, транзистор приближается к порогу открывания. Когда напряжение между базой и эмиттером транзистора VT1 достигнет 0,7 В, он открывается и при дальнейшем росте тока переходит в состояние насыщения. При открывании транзистора выпрямленное напряжение поступает на акустический сигнализатор и приводит его в действие.
Звуковой сигнализатор перегрузки на транзисторе VT1 может быть встроен в любой другой источник питания.
Электронный предохранитель для цепей постоянного тока и, одновременно, стабилизатор напряжения [5.5] может быть выполнен по схеме, показанной на рис. 5.7. На первых двух транзисторах (VT1 и VT2) собран стабилизатор напряжения по традиционной схеме, однако параллельно стабилитрону VD1
цключен релейный каскад на транзисторах VT3 — VT5 с дат-сом тока на резисторе Rx. При увеличении сверх заданной эмы тока в нагрузке этот каскад сработает и зашунтирует ста-питрон. Напряжение на выходе стабилизатора упадет до не-(чительной величины.


5.7. Схема электронного предохранителя — стабилизатора напряжения постоянного тока

Для разблокировки схемы защиты достаточно кратковре—ю нажать кнопку SB1.
Использование автоматических выключателей нагрузки по-!яет предотвратить разряд элементов питания или защитить чник питания от перегрузки. Выполнять функции таймера и матически отключать нагрузку при коротком замыкании по-яет устройство по схеме на рис. 5.8 [5.6].
Автовыключатель нагрузки работает следующим образом, кратковременном нажатии кнопки SB1 конденсатор С1 заря-ся от источника питания через резистор R1. Одновременно атывает ключ (ключи) /ШО/7-коммутатора (DA1), обеспе-я тем самым включение мощного транзистора VT1. Если ключатель SA1 разомкнут, устройство работает по схеме ера. Конденсатор С1 разряжается через цепочку включен-1араллельно ему резисторов R3 и R2. Когда конденсатор С1 чдится, устройство самостоятельно отключится от источника <ия и отключит нагрузку.
При замкнутом переключателе SA1 таймер не работает. 7-коммутатор блокируется подачей на управляющий вход (входы) напряжения высокого уровня через диод VD2 и резисторы R4, R5. Схема защиты источника питания от короткого замыкания в нагрузке выполнена на транзисторе VT2 и работает следующим образом. При работе устройства в нормальном режиме транзистор VT2 закрыт и не влияет на функционирование других элементов схемы. При коротком замыкании в нагрузке ток через диод VD2 не протекает, транзистор VT2 оказывается подключенным к конденсатору С1, на его базу поступает отпирающее смещение через резисторы R5 и R6. Конденсатор С1 разряжается, и происходит отключение устройства. Резистор R4 ограничивает начальный бросок тока при разряде конденсатора С1.


Рис. 5.8. Схема автовыключателя нагрузки — таймера

При суммарном сопротивлении резисторов R2 и R3 100 кОм таймер обеспечивает выдержку в 1 сек, при суммарном сопротивлении 200 кОм — 2 сек, 300 кОм — 3 сек и т.д. до 33 сек. Увеличить время выдержки на один-два порядка можно увеличением номиналов R2, R3 и С1.
Максимальный ток нагрузки определяется типом используемого транзистора VT1 и наличием у него теплоотвода. Незадействованные ключи коммутатора можно подключить параллельно DA1.1 либо использовать в подобных взаимонезависимых схемах автовыключения нагрузки. Такое включение может быть использовано в схемах резервирования функций для обеспечения повышенной надежности работы устройств: выход из строя одного из сопротивлений нагрузки не вызовет отключения или повреждения других каналов. Переключатель SA2 может быть включен при
малых (до 10 мА на ключ) токах нагрузки. При токах нагрузки до 40 мА можно исключить из схемы транзистор VT1 . В этом случае все ключи /ШО/7-коммутатора DA1 должны быть соединены параллельно.
Устройство работает в диапазоне питающих напряжений 5… 15 В и даже при 4 б. Отключить устройство можно нажатием кнопки SB2. В отключенном состоянии оно потребляет ток до долей-единиц мкА.
Известно, что в последовательно соединенной цепи элементы аккумуляторной батареи, разряженные до напряжения ниже 1,1 В, из источника напряжения превращаются в своего рода дополнительную нагрузку для еще неразрядившихся элементов, вызывая резкое падение напряжения на выводах батареи аккумуляторов. Кроме снижения энергоемкости батареи аккумуляторов в целом, это может привести и к «повреждению отдельных ее элементов.


Рис. 5.9. Схема устройства автоматического отключения аккумуляторной батареи

Устройство [5.7], схема которого показана на рис. 5.9, предотвращает слишком глубокую разрядку элементов в батарее. Оно включается между аккумуляторной батареей и нагрузкой. Принцип действия основан на контроле напряжения на нагрузке. Когда оно снижается до уровня 1,1х пВ (где п — число элементов з аккумуляторной батарее) нагрузка и само устройство отклю-наются контактной группой реле, и ток через аккумуляторные элементы прекращается (если в самой батарее отсутствуют ка-<ие-либо неисправности).
При нажатии кнопки SB1 к источнику тока подключаются и нагрузка, и само контролирующее устройство. Напряжение на
инвертирующем входе микросхемы DA1 (вывод 2) определяется стабилитроном VD1 и составляет 3,9 В, а на неинвертирующем (вывод 3) — делителем напряжения на резисторах R1 и R2, причем при нормальном напряжении источника оно несколько выше, чем на инвертирующем входе. В таком состоянии на выходе микросхемы имеется высокий уровень напряжения — реле К1 включается, и его контакты К1.1 оставляют включенными нагрузку и контролирующее устройство даже при отпускании кнопки включения.
Когда напряжение на батарее упадет настолько, что его величина на неинвертирующем входе станет менее 3,9 6, на выходе микросхемы напряжение станет низким, и реле обесточится, разрывая цепь питания. Момент переключения зависит от напряжения на батарее аккумуляторов и величины сопротивления резистора R1, которое следует выбрать в соответствии с таблицей 5.1. Для ограничения базового тока транзистора между выходом микросхемы и базой следует включить резистор сопротивлением 1…10/Ю/И.

Таблица 5.1. Сопротивление резистора R1 при различном напряжении батареи

Напряжение батареи, ВСопротивление резистора, кОм
6,0
1,6
7,22,7
8,43,9
4,7
10,86,2
12,07,5

Данное устройство может давать ложные срабатывания, если к источнику питания подключают слишком мощную нагрузку, при которой напряжение батареи мгновенно «подсаживается». В этом случае отключение нагрузки еще не говорит о том, что элемент (элементы) батареи аккумуляторов разрядился до нижней допустимой границы. Повысить помехозащищенность
/стройства позволит подключение конденсаторов параллельно $ходам компаратора.
Зарядные устройства (ЗУ) обычно снабжены электронной ощитой от короткого замыкания на выходе [5.8]. Однако еще !стречаются простые ЗУ, состоящие из понижающего транс-рорматора и выпрямителя. В этом случае можно применить неложную электромеханическую защиту с использованием реле 1ли автоматических выключателей многократного действия (на-|ример, автоматические предохранители или АВМ в квартирных >лектросчетчиках) [5.8]. Быстродействие релейной защиты со-тавляет примерно 0,1 сек, а с использованием ABM — 1…3 сек.
Когда аккумулятор (или аккумуляторная батарея) соединен выходом устройства, реле К1 срабатывает и своими контактами 11.1 подключает ЗУ (рис. 5.10).


Рис. 5.10. Схема устройства защиты для зарядных устройств

При коротком замыкании выходное напряжение резко уменьится, обмотка реле будет обесточена, что приведет к размыка-ию контактов и отключению аккумулятора от ЗУ. Повторное ключение после устранения неисправности осуществляется кноп-эй SB1. Конденсатор С1, заряженный до выходного напряжения эшрямителя, подключается к обмотке реле. Резистор R1 огранивает импульс тока при ошибочном включении, когда короткое тыкание на выходе еще не устранено.
Резистор R2 ограничивает ток короткого замыкания. Его ожно не устанавливать, если диоды имеют запас по току. Сле-/ет помнить, что в этом случае выходное напряжение ЗУ долж-з быть больше на значение падения напряжения на резисторе 2 при номинальном зарядном токе. АВМ защищает при пере->узках по току, чего релейная защита выполнить не может.
Автоматический предохранитель (или выключатель) подключают последовательно с контактами реле. Сопротивление АВМ — около 0,4 Ом. В этом случае резистор R2 можно не включать.
Для ЗУ автомобильных аккумуляторных батарей необходимо выбрать реле на номинальное напряжение 12 Б с допустимым током через контакты не менее 20 А. Этим условиям удовлетворяет реле РЭН-34 ХП4.500.030-01, контакты которого следует включить параллельно. Для ЗУ с номинальным током до 1 А можно применить реле РЭС-22 РФ4.523.023-05.
Тиристорно-транзисторная схема защиты источника питания от короткого замыкания [5.9] показана на рис. 5.11. Схема работает следующим образом. При номинальном режиме тиристор отключен, транзисторы устройства, включенные по схеме Дарлингтона, находятся в состоянии насыщения, падение напряжения на них минимально (обычно единицы вольт). При возникновении короткого замыкания в нагрузке начинает протекать ток через управляющий переход тиристора VS1, происходит его включение. Открытый тиристор шунтирует цепь управления составного транзистора, ток через который снижается до минимума.


Рис. 5.11. Схема защиты источника питания от короткого замыкания

Светодиод HL1 индицирует наличие короткого замыкания в нагрузке.
Схема рассчитана на работу при больших токах, поэтому на самой схеме защиты падает довольно значительная часть напряжения питания и рассеивается, соответственно, большая мощность.
Устройство, описанное ниже, одновременно может выпол-ять роль стабилизатора постоянного и переменного тока боль-юй величины, защищать цепь нагрузки от короткого замыкания, ыполнять роль регулируемой активной нагрузки с предельной ощностью рассеяния сотни бг[5.10, 5.11].
Основой стабилизатора тока является токостабилизирую-(ий двухполюсник, схема которого приведена на рис. 5.12. Он эедставляет собой модифицированный источник тока, описанный работе [5.12]. Ток через канал полевого транзистора VT1 опреде-чется, преимущественно, напряжением U1 (рис. 5.12) и может эггь вычислен из выражения: I=U1/RM. Напряжение U1 является 1стыо напряжения +Е, приложенного к двухполюснику, а посколь-/ резистивный делитель R1/R2 обеспечивает прямо пропорцио-1льную зависимость между величинами U1 и +Е, то такое же ютношение будет наблюдаться между током I и напряжением +Е.


Рис. 5.12. Токостабилизирующий двухполюсник на основе дифференциального усилителя и полевого транзистора

Эквивалентное сопротивление двухполюсника можно пред-авить как: R3=E/l=ExRM/U1. В свою очередь U1=E*RM/(R1+R2).
Отсюда R3=RM+(R1XRM/R2) или R3=R|/,'<(1+R1/R2). Следова-пьно, ток через двухполюсник можно изменять, регулируя либо личину Ри, либо соотношение сопротивлений делителя R1/R2. in R1»R2 выражение для вычисления эквивалентного сопро-вления двухполюсника упростится: R3=RMxR1/R2.
Практическая схема узла активной нагрузки — стабилиза-эа постоянного тока — приведена в статье [5.10], а ниже, на с. 5.13 показана возможность использования этого схемного шения для стабилизации переменного тока [5.1 1].


Рис. 5.13. Стабилизатор переменного (и постоянного) тока с регулируемым током нагрузки от единиц мА до 8 А

Ток в цепи стабилизатора можно плавно регулировать поворотом ручки потенциометра R2 в пределах от нескольких мА до 8 А, причем максимальный ток нагрузки при необходимости можно увеличить еще на порядок, применив вентиляторы, радиаторы, нарастив количество параллельно задействованных полевых транзисторов.

lib.qrz.ru

Электронные предохранители. Вопросы и ответы

Электронный предохранитель является мощным и универсальным инструментом защиты от перегрузок по току. Вместе с тем, при проектировании электронных предохранителей приходится решать множество задач, например, выбирать оптимальный токовый усилитель. Впрочем, при использовании специализированных ИС самые сложные задачи оказываются решенными.

Традиционный плавкий предохранитель представляет собой простейший элемент защиты от коротких замыканий (рис. 1). Среди его достоинств можно выделить низкую стоимость, высокую доступность, максимальную предсказуемость поведения, высокую надежность, простоту применения. Между собой плавкие предохранители отличаются рейтингом тока, корпусным исполнением и другими характеристиками. Тем не менее, разработчики всегда ищут новые способы решения даже для уже решенных задач, особенно если новые подходы обеспечивают большую гибкость и функциональность. Это касается и проблемы защиты от коротких замыканий. В данной статье в форме вопросов и ответов рассматриваются основные особенности электронных плавких предохранителей (e-fuse или efuse), особое внимание уделяется усилителю тока, который является наиболее важной частью схемы.

Рис. 1. Традиционные плавкие предохранители отличаются рейтингом тока, корпусным исполнением и другими характеристиками. Тип предохранителя выбирается, исходя из требований конкретного приложения

Где можно прочитать об основных характеристиках и особенностях традиционных плавких предохранителей?

В списке литературы приведены ссылки [1, 2], в которых подробно рассматриваются эти вопросы.

Если плавкие предохранители являются простым и надежным элементом защиты от КЗ, то зачем нужно искать альтернативные решения?

Традиционные плавкие предохранители имеют множество достоинств. Вместе с тем у них есть и недостатки, наиболее важными из которых являются: жесткое задание тока срабатывания, невысокое быстродействие (особенно в сравнении с новейшими электронными схемами), необходимость физической замены после срабатывания. Кроме того, точность таких предохранителей при малых токах (в диапазоне 100 мА) оказывается не такой высокой, как хотелось бы большинству разработчиков. В то же время электронные предохранители все чаще используются в автомобилях, платах расширения с возможностью горячей замены и многих других электронных устройствах.

Какая альтернатива существует для плавких предохранителей?

Альтернативой плавким предохранителям становятся полностью электронные предохранители, характеристики которых не так сильно зависят от температуры.

Как выглядит схема электронного предохранителя?

Для создания электронного предохранителя потребуется несколько основных аналоговых компонентов: прецизионный токовый резистор (шунт) [3], усилитель тока (current sense amplifier или CSA) с набором согласованных резисторов, компаратор для формирования сигнала отключения, полевой транзистор для выполнения коммутации нагрузки (рис. 2). Обратите внимание, что электронные предохранители имеют много общего с интеллектуальными силовыми ключами, о которых мы рассказывали в статье «Интеллектуальные ключи. Вопросы и ответы»[3, 4].

Рис. 2. Напряжение на шунте (прецизионном резисторе) измеряется дифференциальным усилителем тока, при этом напряжение на входах не привязано к «земле» усилителя.

Как работает электронный предохранитель?

Ток нагрузки протекает через шунт и создает на нем падение напряжения, которое усиливается дифференциальным усилителем тока. Поскольку сопротивление шунтового резистора известно, то с помощью несложной аналоговой схемы можно задать пороговое значение тока, с учетом закона Ома: I = V/ R (рис. 2).

Если пороговое значение тока превышено, компаратор формирует аварийный сигнал, и силовой полевой транзистор отключает нагрузку (рис. 3). Время отклика для такой схемы составляет всего несколько микросекунд, что намного меньше, чем у традиционных плавких предохранителей, для которых время срабатывания составляет десятки-сотни миллисекунд. Кроме того, поскольку параметры электронных компонентов слабо зависят от температуры, то температурная зависимость тока срабатывания для электронных предохранителей не является такой существенной проблемой, как для плавких предохранителей.

Рис. 3. Полевой транзистор подключен последовательно с нагрузкой и используется для коммутации тока в электронном предохранителе. Этот транзистор должен иметь очень низкое сопротивление открытого канала, чтобы обеспечивать минимальное падение напряжения и низкую рассеиваемую мощность.

Какие особенности есть у предложенной схемы электронного предохранителя?

Во-первых, резистор и усилитель тока должны обладать минимальной температурной зависимостью. При этом значительная погрешность измерения может быть вызвана как колебаниями температуры окружающей среды, так и саморазогревом шунта. Кроме того, для управления полевым транзистором во многих случаях потребуется драйвер, особенно если речь идет о мощных силовых ключах, работающих с большими токами и напряжениями.

Во-вторых, схема должна иметь некоторый гистерезис, чтобы избежать ложных переключений при возникновении перегрузки по току. Аварийный сигнал с гистерезисом может быть сформирован по-разному, например, с помощью простого аналогового компаратора. Для обнаружения перегрузки по току также могут быть применены алгоритмы цифровой обработки сигналов, для чего потребуется связка из АЦП и микроконтроллера (или процессора). Еще одним вариантом подстройки порога срабатывания становится программируемый цифровой потенциометр.

Однако усложнение схемы не идет на пользу надежности. Поэтому очень важно понять, является ли интеллектуальное поведение электронного предохранителя действительно необходимым или более критичным будет высокий уровень надежности.

Что такое усилитель тока?

Выбор усилителя тока (current sense amplifier или CSA) оказывается не таким простым, как может показаться с первого взгляда. Несмотря на название, в действительности усилитель тока фактически работает с напряжением. При этом на его выходе формируется напряжение, пропорциональное току, протекающему через шунтовой резистор. Тем не менее, многие производители используют термин «усилитель тока», что хорошо подходит в случае со схемой электронного предохранителя.

Чем усилитель тока отличается от обычного операционного усилителя?

Есть несколько важных отличий. Во-первых, усилитель тока по определению является дифференциальным усилителем (diff amp). Это связано с тем, что в большинстве схем шунтовой резистор не подключен к земле. Вместо этого он, как правило, располагается между источником питания и нагрузкой. Поэтому усилитель тока должен работать без привязки к земле, то есть измерять не синфазное, а дифференциальное напряжение.

Это единственное различие?

Нет. В отличие от обычных дифференциальных усилителей усилитель тока, должен обеспечивать работу с широким диапазоном синфазных напряжений. В качестве примера можно рассмотреть случай, когда шунтовой резистор включен последовательно с мощным электродвигателем с рабочим напряжением в несколько десятков вольт (или даже выше). Еще одним примером является схема защиты от КЗ батареи аккумуляторов с высоким суммарным напряжением.

Кроме того, усилитель тока должен гарантировать высокую точность измерений небольших дифференциальных напряжений даже при наличии высоких синфазных напряжений. Современные усилители тока способны выполнять измерения дифференциальных напряжений порядка 10…100 мВ в присутствии синфазных напряжений 50…100 В (а также отрицательных напряжений) без ухудшения точности или потери работоспособности.

Какие еще особенности есть у усилителей тока?

Усилитель тока должен обеспечивать высокую стабильность и точность усиления входного напряжения. Как уже было сказано, в большинстве случаев шунтовые резисторы имеют очень низкое собственное сопротивление. В результате, при протекании даже значительных токов, на них падает порядка 10…100 мВ. Это позволяет, с одной стороны, минимизировать падение напряжения питания, подаваемого на нагрузку, а с другой стороны — снизить уровень рассеиваемой мощности.

Однако столь низкое напряжение не подходит для большинства аналоговых схем из-за наличия шумов и помех. Таким образом, усилитель необходим для нормирования сигнала до приемлемого уровня, обычно 1…10 В. Для установки коэффициента усиления в схеме дифференциального усилителя используются точные и согласованные резисторы. Эти резисторы также должны иметь одинаковые температурные зависимости для того, чтобы любые колебания температуры оказывали минимальное влияние на точность. Другим важным требованием к усилителю тока является сверхнизкое входное напряжение смещения, которое должно быть во много раз меньше, чем измеряемое дифференциальное напряжение на шунтовом резисторе.

Какие еще преимущества есть у электронных предохранителей по сравнению с плавкими предохранителями?

Как и в случае с плавкими предохранителями, электронные предохранители включаются между источником питания и нагрузкой (рис. 4). При этом их функционал может быть гораздо шире. Интегральные электронные предохранители, такие, например, как TPS25925x от Texas Instruments, имеют целый ряд дополнительных функций и особенностей, в том числе программируемую пользователем защиту от просадки напряжения, защиту от перенапряжений, схему автоматического повторного включения, программируемое время включения, которое может быть установлено с помощью внешних компонентов (рис. 5). Возможность настройки времени включения оказывается полезной для осуществления контроля стартового тока при запуске и выполнении «горячей замены» модулей (рис. 6). Несмотря на сложную внутреннюю схему, электронные предохранители довольно просты в использовании и поставляются различными производителями, например, ST Microelectronics, Analog Devices, ON Semiconductor и т. д.

Рис. 4. Электронные предохранители просты в использовании. Как и в случае с плавкими предохранителями, они включаются между источником питания и нагрузкой

Рис. 5. Схема электронного предохранителя может включать множество различных блоков, которые добавляют такие функции, как программируемый порог тока отключения, задержка и скорость включения и т.д. Все это значительно расширяет функционал и универсальность электронных предохранителей по сравнению с традиционными плавкими предохранителями. 

Рис. 6. Электронные предохранители позволяют не только программировать значение тока отключения, но и обеспечивают быстрое отключение нагрузки, а также гистерезис тока при восстановлении после КЗ (слева). На рисунке справа: сверху представлена осциллограмма входного напряжения, под ним расположена осциллограмма выходного напряжения, а в самом низу помещена осциллограмма тока

Можно ли использовать электронный предохранитель совместно с обычным плавким предохранителем?

Да, это весьма популярная и распространенная схема. Электронный предохранитель действует как первый, быстрый и гибкий рубеж обороны. Плавкий предохранитель действует как второй и резервный механизм защиты, который гарантирует физическое размыкание цепи в случае катастрофических отказов, чего не может обеспечить электронный предохранитель. Это позволяет системе соответствовать требованиям различных нормативов и стандартов.

Заключение

В данной статье были рассмотрены основные особенности электронных плавких предохранителей, их функциональная схема, а также примеры реализации в виде ИС. В зависимости от требований конкретного приложения электронные предохранители могут использоваться автономно, либо совместно с традиционными плавкими предохранителями. Каждый из типов предохранителей имеет свои преимущества и недостатки, а совместно они способны обеспечить надежную и гибкую защиту от перегрузки по току.

Литература

  1. EEWorld Online, Fuses for power protection, Part 1
  2. EEWorld Online, Fuses for power protection, Part 2
  3. EEWorld Online, Options for current sensing, Part 1
  4. EEWorld Online, Load switches, Part 1: Basic role and principle

 

www.terraelectronica.ru

Электронный предохранитель с регулируемым порогом срабатывания


Этот электронный предохранитель с регулируемым порогом срабатывания придумал автор Instructables под ником GreatScottLab.

Последовательно с нагрузкой включён шунт — мощный резистор сопротивлением в 0,1 Ом. Напряжение до шунта (почти не зависящее от тока нагрузки) подано на неинвертирующий вход первого операционного усилителя, после (зависящее от этого тока заметно сильнее) — на инвертирующий. Усилитель производит вычитание этих сигналов, результат которого поступает на неинвертирующий вход второго операционного усилителя, а на его инвертирующий вход подано напряжение с подвижного контакта подстроечного резистора. Этот усилитель работает в режиме компаратора: вместо вычитания он сравнивает сигналы, переключаясь скачком. Подстроечный резистор позволяет выставить порог срабатывания электронного предохранителя. Оба усилителя расположены в корпусе одной микросхемы LM358.


Схема построена таким образом, что отсутствию перегрузки соответствует логический нуль на выходе компаратора. Транзисторный инвертор превращает его в единицу, а ключ на таком же транзисторе включает реле. Напряжение поступает на нагрузку через его нормально разомкнутые контакты. При перегрузке нуль на выходе компаратора сменяется единицей, которую инвертор превращает в нуль. Ключ отключает реле и нагрузку. Диод, включённый параллельно обмотке реле в обратной полярности, принимает на себя возникающий при этом импульс самоиндукции. После отключения нагрузки ток через шунт проходить перестаёт, на выходе компаратора появляется снова логический нуль, но реле своими нормально замкнутыми контактами через кнопку также с нормально замкнутыми контактами (на схеме ошибочно показаны как нормально разомкнутые) и резистор подаёт на вход инвертора логическую единицу, отчего ключ не возвращает реле во включённое состояние.

Устранив перегрузку, пользователь нажимает на кнопку, контакты которой размыкаются, и логическая единица с входа инвертора исчезает. Реле включает нагрузку, и устройство снова готово устранить перегрузку в любой момент, если она появится. Перезапуска кнопкой устройство требует и после отключения и последующего включения питания.

Итак, мастер берёт все компоненты, необходимые для сборки самоделки:

Устанавливает их на кусок макетной платы типа perfboard:

Клеммники очень удобны для подключения БП и нагрузки, но работая с постоянным напряжением, следует помнить о полярности. Поэтому хорошо нанести на клеммники или рядом с ними соответствующую маркировку. А вход и выход на плате, как видим, уже обозначены. Компоненты мастер соединяет между собой пайкой:

Для проверки конструкции необходимо включить через неё нагрузку и выставить подстроечным резистором такой порог срабатывания, чтобы он лишь немного превышал потребляемый нагрузкой ток. Затем подключить параллельно нагрузке ещё одну, менее мощную. Реле должно отключиться.


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Электронный предохранитель на полевом транзисторе. Схема и описание

Электронный предохранитель являются действенным способ позволяющий защитить всевозможные электронные приборы от перегрузок по току.

В основном электронные предохранители обязаны соответствовать следующим требованиям: они должны быть экономичными, простыми и в то же время надежными и иметь малые размеры. Для воплощения всех перечисленных требований как нельзя, кстати, подходят полевые транзисторы высокой мощности.

Принципиальная схема одного из вариантов подобного электронного предохранителя приводится в данной статье.

Описание работы электронного предохранителя

Данный электронный предохранитель подключается в разрыв цепи между источником питания и защищаемой нагрузкой. Схема обеспечивает защиту при напряжении 5…20 вольт при нагрузке, доходящей до 40 ампер.

На операционном усилителе LМ358 (DA1) построен компаратор, на вход 3 которого подается опорное напряжение со стабилизатора TL431 (DA2). Полевой транзистор VT1 воплощает сразу две функции: датчика тока и мощного электронного ключа. Как уже отмечалось выше, специфика электронного предохранителя заключается в применении сопротивления канала полевого транзистора в роле датчика тока.

 Ключевые характеристики используемого полевого транзистора

  •  предельная мощность рассеивания — 110 Вт.
  • сопротивление канала — 0,027 Ом.
  • максимальное напряжение сток-исток — 55 В.
  • предельный ток стока — 41 А.

Для активации предохранителя предназначена кнопка SA1 (без фиксации). При непродолжительном нажатии на ее, напряжение поступает на затвор полевого транзистора через сопротивление R4 и диод VD2. В результате этого транзистор подключает питание к  нагрузке.

Состояние на выходе операционного усилителя LМ358 связано с уровнем напряжения на его входе 2. Если ток, потребляемый нагрузкой, меньше установленного порога срабатывания электронного предохранителя, то напряжение на входе 2 компаратора будет ниже опорного напряжения на выводе 3. В результате на выходе 1 будет высокий уровень напряжения, который поддерживает транзистор в открытом состоянии.

Одновременно с ростом тока потребления, будет увеличиваться и напряжение на полевом транзисторе VT1. Когда данное напряжение превзойдет напряжение на сопротивлении R1, на выходе компаратора напряжение начнет снижаться, транзистор VT1 начнет закрываться с одновременным ростом напряжение на нем.

В связи с этим на выходе компаратора еще сильнее снижается напряжение, что в конечном итоге это приводит к мгновенному закрытию транзистора и обесточиванию нагрузки. Для повторной активации электронного предохранителя нужно повторно нажать кнопку SA1.

Необходимую величину тока срабатывания предохранителя подбирают подстроечным сопротивлением R1. В случае если контролируемое питание стабильно, то стабилизатор DA2 и сопротивление R3 можно убрать из схемы, установив на место R3 перемычку. Для надежного отключения контролируемой нагрузки при небольшом токе срабатывания (не более 1…1,5 ампер) надлежит повысить сопротивление датчика тока, подключив резистор около 0,1 Ом в электрическую цепь стока транзистора VT1 (точка «А» на схеме).

В схеме возможно использовать произвольный ОУ (DA1), который может работать при нулевом напряжении на обоих входах в режиме однополярного питания, а именно К1464УД1Р, КР1040УД1А, К1464УД1Т. Линейный стабилизатор DA2 может быть заменен на отечественный КР142ЕН19. Подстроечный резистор марки СПЗ-28, СПЗ-19а. Все постоянные резисторы С2-33, МЛТ. Не оксидный конденсатор С1 типа К10-17В

Источник: Радио, 6/2005

www.joyta.ru

Быстродействующий электронный предохранитель

Устройство предназначено для быстрого отключения потребителей энергии от сети, если ток в цепи превысит допустимую величину. По сравнению с плавкими и электромеханическими предохранителями электронный имеет значительно большее быстродействие. Кроме того данное устройство можно легко и точно настроить на срабатывание при любом токе в диапазоне 0,1 …10 А.

Приводимая схема, рис. 1.9, по сравнению с аналогичными описанными в литературе [ЛЗ] проще в изготовлении и содержит меньше деталей.

Питается устройство защиты непосредственно от сети по бестрансформаторной схеме. Коммутацию нагрузки выполняет электронный ключ — симистор VS1. Для его открывания на управляющий электрод через трансформатор Т2 поступают короткие импульсы. Эти импульсы в нормальном режиме формируются автогенератором, выполненным на однопереходном транзисторе VT1. Использование автогенератора позволяет обеспечить экономичность работы схемы.

Для открывания симистора необходим ток через управляющий электрод до 100 мА. Этот ток обеспечивается в импульсном режиме. Необходимая энергия в генераторе накапливается на конденсаторе С2 при его заряде от источника питания (через резистор R2). Как только напряжение на нем достигнет порога открывания транзистора VT1 — конденсатор С2 разряжается по цепи переход эмиттер-база VT1-Т2/1. Процесс этот повторяется с частотой, определяемой величиной номиналов элементов R2-C2 (примерно 1,5…2 кГц).

Так как частота следования импульсов автогенератора значительно больше, чем сетевая (50 Гц), то симистор открывается практически в начале каждого полупериода сетевого напряжения.

Датчиком тока в цепи нагрузки является токовый трансформатор Т1. При протекании в нагрузке тока он проходит и через первичную обмотку Т1. Во вторичной обмотке (3-4) выделяется повышенное напряжение, пропорциональное току в нагрузке.

Быстродействующий электронный предохранитель

Это напряжение выпрямляется диодным мостом (VD1) и поступает через резистор R5 на управляющий электрод тиристора VS2. Если данное напряжение достигнет уровня, необходимого для срабатывания тиристора VS2, он откроется. В этом случае VS2 через диод VD2 закорачивает цепь заряда конденсатора С2 и автогенератор перестанет работать. Когда импульсы, управляющие коммутатором VS1, пропадут — нагрузка отключится и начнет светиться индикатор (HL1) работы защиты.

В этом состоянии схема может находиться долгое время и чтобы вернуть ее в исходное, необходимо нажать кнопку SB1. А с помощью кнопки SB2 нагрузку можно при необходимости отключить вручную. Общим выключателем является также SA1.

Чувствительность срабатывания схемы можно плавно регулировать при помощи резистора R3. Конденсатор С1 предохраняет от срабатывания защиты при кратковременных помехах в сети.

Быстродействующий электронный предохранитель

Токовый трансформатор Т1 потребуется изготовить самостоятельно. Для намотки удобно использовать каркас и магнитопровод от любого трансформатора, применяемого в старых отечественных телефонах. Подойдет магнитопровод из железа или феррита М2000НМ типоразмера Ш5х5 (в месте расположения катушки у него сечение 5×5 мм). При этом обмотка 3-4 выполняется проводом ПЭЛ диаметром 0,08 мм и содержит 3000…3400 витков. Последней наматывается обмотка 1-2 проводом ПЭЛ-2 диаметром 0,82…1,0 мм — 30…46 витков.

Импульсный трансформатор Т2 выполнен внутри броневого магнитопровода типоразмера Б14 из феррита с магнитной проницаемостью М2000НМ. Его конструкция показана на рис. 1.43. В центре сердечника необходимо обеспечить зазор 0,1…0,2 мм, что исключит его намагничивание в процессе работы. Обмотка 1 содержит 80 витков, 2 — 40 витков проводом ПЭЛШО диаметром 0,1…0,12 мм.

В схеме использованы детали: подстроенный резистор R3 типа СПЗ-19а, остальные резисторы любого типа; конденсаторы С1, СЗ типа К50-35 на 25 В; С2 и С4 — К73-17В на рабочее напряжение не менее 63 и 400 В соответственно. Кнопки SB1, SB2 и светодиод HL1 подойдут любые миниатюрные.

Настройку схемы лучше начинать с проверки работы автогенератора собранного на транзисторе VT1. Для этого удобно питание подавать не от сети, а использовать внешний источник постоянного напряжения 15…20 В, подключив его в точки а-б.

При работе автогенератора на конденсаторе С2 должно быть напряжение, форма которого показана на рис. 1.10. Если таких импульсов нет, то может потребоваться подбор номинала резистора R2.

Быстродействующий электронный предохранитель

 

Срабатывание тиристора VS2 при нажатии на кнопку SB2 должно фиксироваться. Если светодиод HL1 постоянно не светится после отпускания кнопки — надо уменьшить номинал резистора R4 для увеличения тока, необходимого, чтобы удерживать VS2 в открытом состоянии.

Проверить работу устройства можно, подключив к гнездам XS1 лампу и стрелочный вольтметр. Прежде всего необходимо убедиться в том, что симистор VS1 полностью открывается (измерив напряжение на лампе). Если это не так, то нужно поменять местами выводы в любой из обмоток импульсного трансформатора Т2.

Схему электронного предохранителя можно упростить, убрав токовый трансформатор Т1, а вместо его обмотки 1-2 использовать резистор (R10) с маленьким сопротивлением (0,2…0,3 Ом) и диод, рис. 1.11. Величина сопротивления R10 подбирается под нужный ток защиты. Но в этом случае схема защиты будет работать на одной полуволне сетевого напряжения, что, естественно, может снизить быстродействие при отключении нагрузки.

При использовании схемы следует учитывать, что некоторые потребители энергии, например лампы, импульсные источники питания, электромоторы и некоторые другие, в момент включения дают Оросок тока. В этом случае порог срабатывания защиты надо увеличивать или, что будет значительно лучше, принять меры по уменьшению броска тока в нагрузке. Например, для лампы освещения можно обеспечить режим плавного увеличения напряжения при включении. :)то не только продлит ее срок службы, но и уменьшит помехи в сети.

Простейший способ уменьшения броска тока при включении пампы — применение защитных терморезисторов с отрицательным температурным коэффициентом сопротивления. В настоящее время такие резисторы, например из серии ТР-15, выпускает отечественная промышленность. Эти резисторы позволяют сглаживать пусковые броски тока в лампах накаливания, кинескопах, импульсных источниках питания, электромоторах и других устройствах в 5…10 раз. В рабочем режиме терморезисторы нагреваются проходящим через них током до температуры 150…200°С. При этом они уменьшают свое сопротивление более чем в 100 раз.

Так, например, для защиты ламп накаливания мощностью 100…200 Вт подойдет терморезистор типа ТР-15-470-1,6 (номинальное сопротивление при 25°С — 470 Ом, а в прогретом состоянии 4,3 Ом). Для мощности лампы 25…100 Вт — ТР-15-1000-1,6 (номинальное сопротивление при 25°С — 1000 Ом, в прогретом состоянии 9,2 Ом).

Литература:  И.П. Шелестов — Радиолюбителям полезные схемы, книга 3.

www.qrz.ru

0 comments on “Схема электронного предохранителя – Как сделать электронный предохранитель своими руками

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *