cxema.org — Мощный импульсный блок питания до 4кВт
Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но…. схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.
В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Диодный мост — 30 Ампер 1000 Вольт — готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы — IRFP460, старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска — 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор — в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.
Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер — для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер — для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.
Генератор построен на TL494, настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 — вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 — с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт — UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем — при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 — заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Во многих источниках упомянули, что данный блок не включается без нагрузки — но это не так! Он очень даже хорошо запускается и на всех обмотках есть напряжение.
Никогда не выставляйте максимальное выходное напряжения — блок может в нагруженном состоянии издавать свист — на своем опыте понял, что это полностью безопасно, но неприятно.
С уважением — АКА КАСЬЯН
- < Назад
- Вперёд >
vip-cxema.org
Импульсные источники питания | Электрознайка. Домашний Электромастер.
Здравствуйте уважаемые коллеги!!
Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».
Для ИБП по схеме двухтактного полумостового генератора, напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой.
Смотреть схему ИБП здесь.
Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора. Магнитопровод с зазором используется только в однотактных ИБП.
Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки. Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример.
Первый пример.
Выберем из таблицы ферритовых сердечников №17, Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.
Окно Sо = 150 мм.кв. Расчетная мощность 200 ватт.
Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.
Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25. Примем 182 витка.
При выборе толщины провода для обмоток, я исходил из таблицы «Диаметр провода — ток».
В своем трансформаторе я применил, в первичной обмотке, провод диаметром 0,43 мм. (провод большим диаметром не умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв. Допустимый ток (смотреть в таблице) I = 0,29 A.
Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт. Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков. Диаметр провода 0,3 — 0,4 мм.
Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения. Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 (смотреть по схеме).
Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора: I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;
Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм. Его площадь сечения S = 0,28 мм.кв.
Допустимый ток каждой из двух полуобмоток I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А.
Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.
Возьмем по 38 витков в каждой полуобмотке.
Мощность на выходе трансформатора: Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.
Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.
Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.
Второй пример.
При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.
Площадь окна останется та же «Sо» = 150 мм.кв. Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.
Отсюда, количество витков в первичной обмотке трансформатора будет:
w1 = n х 145 = 0,63 х 145 = 91,35. Примем 92 витка.
В обмотке обратной связи w3, для 6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.
Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт.
Количество витков вторичных полуобмоток, каждая по 30 вольт: w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19 витков.
Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв., ток 0,56 А.
С этим проводом мощность первичной обмотки будет: Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.
Вторичную обмотку я мотал проводом диаметром 0,9 мм. Сечением 0,636 мм.кв. на ток 1,36 ампера. Для двух полуобмоток ток во вторичной обмотке равен 2,72 ампера.
Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт.
Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.
Провод для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.
Общий вывод из этих расчетов таков:
— при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк» в два раза при той же площади окна «Sо».
— число витков в обмотках (в сравнении с первым вариантом) изменяется.
— первичная обмотка w1 с 182 витков уменьшается до 92 витка;
— вторичная обмотка w2 с 38 витков уменьшается до 19 витков.
Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.
Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.
Нужно иметь в виду, что трансформаторы, по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт. ИБП вполне хорошо и стабильно держат напряжение.
Сравните внешний вид трансформаторов: пример-1, c одним сердечником и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.
Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.
Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему ИБП смотрите здесь.
Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:
— емкости сетевого электролитического конденсатора С1,
— емкостей С4 и С5,
— падения мощности в проводах обмоток и в самом ферритовом сердечнике;
— падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.
Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.
Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.
Порядок сборки ферритового Ш — трансформатора.
Используется готовый или собирается — изготавливается новый каркас под размеры сердечника.
Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.
Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную.
На каркас сначала мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д. На начало и конец провода надевается тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился.
Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи w3. Обмотка w3 имеет мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки. Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания.
Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет. Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора.
Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается. Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой.
Собранный ферритовый трансформатор, для крепости, стягивается по торцу скотчем. Нужно проследить, чтобы торцы половинок сердечника совпали без зазора и сдвига.
domasniyelektromaster.ru
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.
Схема регулируемого лабораторного БП из ATX
Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.
Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.
Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.
Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.
На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.
Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.
Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.
Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).
Испытания блока питания
Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.
Форум по АТХ БП
Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
radioskot.ru
cxema.org — Самый простой импульсный блок питания
Самый простой импульсный блок питания
Представляю самый простой миниатюрный импульсный блок питания, который может быть успешно повторён начинающим радиолюбителем. Он отличается надежностью, работает в широком диапазоне питающих напряжений, имеет компактные размеры.
Блок питания обладает относительно небольшой мощностью, в пределах 2-х ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.
Схема проще даже самых простых импульсных источников питания, к которым относятся зарядные устройства для мобильных телефонов.
Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.
Импульсный трансформатор имеет три обмотки , коллекторная или первичная , базовая обмотка и вторичная.
Важным моментом является намотка трансформатора, и на печатной плате и на схеме указаны начала обмоток, так , что проблем возникнуть не должно. Расчетов не делал, а количество витков обмоток позаимствованы от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток тоже. Первой мотается первичная обмотка, которая состоит из 200 витков, диаметр провода от 0,08 до 0,1 мм, затем ставиться изоляция и таким же проводом мотается базовая обмотка, которая содержит от 5 до 10 витков. Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение вам нужно, по моим скромным подсчетам получается около 1 вольта на один виток.
Сердечник для трансформатора можно найти в нерабочих блоках питания от мобильных телефонов, светодиодных драйверов и прочих маломощных источников питания, которые как правило построены именно на базе однотактных схем, в состав которых входит нужный трансформатор.
Один момент — блок однотактный и между половинками сердечника должен быть немагнитный зазор, такой зазор имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна), Если не находите трансформаторов с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.
Готовый трансформатор собирают обратно, половинки сердечника стягиваются скажем скотчем либо намертво склеиваются суперклеем.
Схема не имеет стабилизации выходного напряжения и узлов защиты от коротких замыканий, но как не странно ей не страшны никакие короткие замыкания. При коротких замыканиях естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, и все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.
Резистор указанного номинала ограничивает входной ток на уровне 14, 5 мА, по закону ома, зная напряжение в сети легко можно рассчитать мощность, которая составляет в районе 3,3 ватт, это мощность на входе, с учетом кпд преобразователя выходная мощность будет процентов на 20-30 меньше этого. Увеличить мощность можно, для этого достаточно снизить сопротивление указанного резистора.
Силовой транзистор — это маломощный высоковольтный биполярный транзистор обратной проводимости, подойдут ключи типа MJE13001, 13003, 13005, более мощные ставить нет смысла, первого варианта вполне хватает.
На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь советую использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.
О недостатках схемы:
- Ограничительный резистор на входе снижает кпд, не на много, но снижает , взамен он гарантирует безопасную работу блока;
- Ограниченная выходная мощности — для того, чтобы на этой основе построить блок питания скажем ватт на 10-20, нужно снизит его сопротивление и увеличит мощност, чтобы нагрев не выходил за рамки, а это неудобно и увеличивает размеры блока питания в целом.
Но с другой стороны, схожие схемы применяются там, где нужна мощность в пределах 3-5 ватт, например в моем случае блок предназначен для питания небольшого кулера, поэтому мощность ограничена в пределах 2-х ватт.
Области применения — их очень много, так, как блок имеет гальваническую развязку от сети, следовательно, он безопасен и его выходное напряжение никак не связано с сетью. Отличный вариант для запитки светодиодов, вентиляторов охлаждения, питания каких-то маломощных схем и многое другое.
Печатная плата тут
- < Назад
- Вперёд >
vip-cxema.org
Как устроен блок питания, часть 5
В качестве самой просто схемы я покажу вариант с одним диодом и конденсатором. Такая схема используется в обратноходовых блоках питания, которые составляют сейчас подавляющее большинство.
В готовом блоке питания она выглядит так, как показано на этом фото.
Такие блоки питания чаще всего идут в комплекте с недорогой техникой.
Следующим шагом идет двухполупериодный выпрямитель. Эта схема использовал раньше весьма часто, но в последнее время вытеснена другой, которую я покажу позже.
Такая схемотехника чаще всего встречается в мощных блоках питания, особенно она удобна в нерегулируемых блоках на базе драйвера IR2151-2153, о которых я рассказывал в прошлой части.
Как я тогда сказал, она хорошо подходит для построения первичных источников питания, которые не являются стабилизированными, но которые имеют хороший КПД и могут использовать для питания других устройств, например как этот блок питания лабораторного источника питания.
Особое преимущество данной схемы в том, что ее очень легко переделать в двухполярную и использовать для питания усилителей мощности. В таком варианте добавляется всего пара диодов и конденсатор.
Когда мощности обратноходовой схемотехники не хватает, то используют ее прямоходовый вариант. Здесь энергия при одном такте сначала накапливается в дросселе, а потом через нижний диод поступает в нагрузку. Данная схемотехника очень похожа на схему классического StepDown преобразователя.
Заметить что блок питания собран по такой схемотехнике очень просто, на плате будет большой дроссель. В качестве фильтрующих дроссели с таким габаритом используют крайне редко, потому ошибиться сложно.
Но есть альтернативный вариант этой схемы. Он применяется чаще всего в компьютерных блоках питания и ведет свои истоки от первых БП формата АТ.
Здесь присутствует накопительный дроссель, а первичная обмотка силового трансформатора связана с одной из обмоток трансформатора управления. Если изъять дроссель из этой схемы, то блок питания при нагрузке выше определенной выйдет из строя.
То же самое касается и предыдущей схемы.
Отличить блоки питания последних двух типов очень легко, слева БП построенный по аналогии блока питания АТ формата, у него сразу заметен трансформатор около транзисторов, справа однотактный прямоходовый, трансформатора здесь нет.
Дроссели имеют разные размеры, но это следствие разной рабочей частоты и иногда экономии производителя. Меньший дроссель в работе скорее всего будет перегреваться, да и схема можно работать не очень надежно при максимальной мощности.
Чаще всего в качестве выходных диодов импульсных блоков питания используются диоды Шоттки. Они имеют два важных преимущества перед обычными:
1. Падение напряжения на них в 1.5-2 раза меньше
2. Они быстрее, чем обычные диоды, потому имеют меньше потер при переключении.
В блоках питания рассчитанных на высокое выходное напряжение применяют чаще всего обычные диоды, так как прямое падение у высоковольтных обычных и Шоттки примерно одинаково. Но из-за того что Шоттки быстрее, можно получить уменьшенные потери на снаббере, потому я советую применять их и здесь.
Так как после выпрямления на конденсаторе будут присутствовать заметные пульсации, то после него ставят LC фильтр или говоря простым языком — дроссель и конденсатор
Для примера "народный" блок питания где явно виден как дроссель, так и два конденсатора.
Дроссель необязательно будет большим, а вполне может быть совсем миниатюрным. Работать правда он будет хуже, но это лучше чем ничего.
Иногда дроссель вообще не ставят, хотя место под него есть. Это банальная экономия "на спичках", я всегда рекомендую установить на это место дроссель.
Для примера уровень пульсаций без дросселя и с дросселем. Но стоит учитывать, что после установки дросселя пульсации на первом конденсаторе вырастут, так как на него будет приходится "ударный" ток. Обычно именно он выходит из строя первым.
Улучшить ситуацию можно установив параллельно электролитическим конденсаторам керамические. Данная мера можно существенно облегчить режим работы электролитов. Но стоит иметь в виду, что эффективно они работают только при относительно небольших мощностях БП, а точнее при относительно небольших токах. Можно конечно поставить много таких конденсаторов, но это дорого и габаритно.
При доработке конденсаторы можно напаивать прямо на выводы электролитических конденсаторов.
Я применяю конденсаторы с емкостью 0.1-0.47мкФ.
Чтобы еще немного улучшить качество работы, следует внимательнее отнестись к разводке печатной платы. Если страссировать плату по типу того как я показал на схеме, то пульсации могут еще немного уменьшиться, тем более что это бесплатно.
Ну и последний шаг, установка синфазного дросселя на выходе блока питания. Такое применяется чаще всего в фирменных блоках питания, которым требуется проходить сертификацию на уровень помех излучаемых в эфир. В дешевых практически никогда не встречается.
Теперь об выходных конденсаторах.
Если вы пользуетесь дешевыми блоками питания, то скорее всего на выходе увидите либо вообще безымянные модели.
Либо подделку под фирменные. Например в народном блоке питания применяют подделки под Sanyo или Nichicon, проверить очень просто, по маркировке. Скорее всего вы либо вообще не найдете конденсаторов такой серии, либо в этой серии не будет такого номинала с таким габаритом как у вас, либо внешне они будут отличаться цветом, как в данном случае.
Такие подделки на самом деле не самый худший вариант, но лучше применять фирменные.
Кстати в двухтактных БП конденсаторы обычно живут дольше и требования к их качеству меньше чем у обратноходовых однотактных.
Но все равно, лучше применять именно фирменные конденсаторы, а не суррогаты с их именем. На фото блок питания фирмы Менвелл.
Для облегчения работы конденсаторов есть способ, когда вместо одного двух емких устанавливают много менее емких конденсаторов. В таком варианте нагрузка лучше распределяется и конденсаторы живут дольше.
Схема стабилизации.
Самый простой вариант — стабилизировать напряжение по обратной связи со вспомогательной обмотки трансформатора, правда такое решение и самое плохое в плане стабильности, так как влияет магнитная связь между обмотками и их активное сопротивление, зато дешево.
Следующий вариант сложнее, здесь в качестве порогового элемента применен стабилитрон. В таком варианте выходное напряжение Бп будет равно падению на стабилитроне + напряжению на светодиоде оптрона. Характеристики схемы так себе, но вполне приемлемы для некритичных нагрузок.
Например блок питания с такой стабилизацией. Сверху около оптрона ничего нет.
Снизу расположен стабилитрон и несколько резисторов
Но куда лучшие характеристики показывает схема с регулируемым стабилитроном TL431. Она имеет куда выше качество работы и точность поддержания в том числе лучше держит параметры при изменении температуры.
На плате она обычно выглядит так, как показано на фото.
Выглядит он примерно как обычный транзистор в корпусе ТО-92, отличие только в маркировке. Данный вариант встречается чаще всего. Альтернативный вариант, который вы можете встретить, SMD корпус SOT-23.
Расположение выводов в разных вариантах корпуса.
Например в "народном" блоке питания применен SMD вариант корпуса. На фото видны резисторы делителя обратной связи и вспомогательные, например "подтяжки" к питанию чтобы сформировать минимальный рабочий ток для стабилитрона.
Еще пара фото, сверху платы ничего нет, а стабилитрон TL431 находится снизу.
Иногда в цепи обратной связи ставят подстроечный резистор. Но сначала я скажу пару слов о том, как рассчитывается делитель.
Если применяется стандартный делитель из двух резисторов, то его номиналы подбираются таким образом чтобы при требуемом выходном напряжении в точке соединения было 2.5 Вольта, именно на это напряжение и рассчитана TL431, но стоит учитывать, что есть и более низковольтный вариант этой микросхемы, на 1.25 Вольта, хотя встречается он гораздо реже.
Теперь к подстроечному резистору. Для большего удобства на плате может располагаться подстроечный резистор, позволяющий менять выходное напряжение в небольших пределах, чаще всего +/- 10-20%, больший диапазон не рекомендуется, так как Бп может вести себя нестабильно.
Подстроечный резистор всегда должен стоять последовательно с нижним резистором делителя, тогда в случае выхода его из строя вы получите на выходе Бп минимальное напряжение, а не максимальное, как если бы подстроечный резистор стоял сверху.
Кроме того подстроечные резисторы часто имеют низкую надежность, и если вам не нужна эта функция, то лучше заменить его на постоянный, предварительно подобрав его номинал.
Полностью на плате весь этот узел выглядит следующим образом.
Пару слов о выходном нагрузочном резисторе.
Импульсный блок питания плохо работает без нагрузки, потому параллельно выходу обычно ставят нагрузочный резистор, обеспечивающий минимально необходимую нагрузку при которой БП работает стабильно.
Есть и минус у данного решения, резистор обычно греется, причем иногда заметно. Кроме того этот резистор может греть конденсаторы если они стоят рядом, как на этом фото.
Иногда они греются так, что на плате становятся видны следы перегрева. Но кроме того этот нагрев может плохо сказываться на стабильности БП если он подогревает резисторы делителя обратной связи и они при этом применены обычного типа, а не точные/термостабильные.
Резисторы греются, параметры начинают меняться и меняется выходное напряжение БП, потому рекомендуется располагать резисторы делителя так, чтобы они не были подвержены нагреву, а кроме того лучше применять точные резисторы, на которые нагрев влияет существенно меньше.
Иногда производители неправильно выбирают номинал нагрузочного резистора и он начинает греться сильнее чем допустимо. Например в 24 Вольте версии "народного" блока питания как раз была такая ситуация, пришлось поменять его потом на резистор в два раза большего номинала.
Чтобы ваши блоки питания работали надежно, следует внимательно отнесись к подбору компонентов.
Диоды выбираются из расчета двухкратного запаса для двухтактной схемы и трехкратного для однотактной, например БП 5-7 Ампер, значит диод ставим на 15-20.
Напряжение должно быть не менее чем в четыре раза больше чем выходное у блока питания, если БП на 12 Вольт, то диод на 60, если на 24, то на 100.
Все эти параметры есть в даташите на диоды
Также они указаны на самих диодах.
Конденсаторы следует выбирать низкоимпедансные или LowESR, это также обычно отражено в даташите на компонент.
Емкость выбираем из расчета 0.5-1 тысяч мкФ на 1 Ампер выходного тока. Напряжение — для двухтактной схемы 1.5-2 раза выше чем выходное, для обратноходовой однотактной — не менее чем 2х от выходного.
По фирмам смотрим чтобы были известные бренды, но это я писал и в статье про входной фильтр, здесь рекомендации аналогичны.
С выходным дросселем все гораздо проще, номинальный ток дросселя не менее чем максимальный выходной ток блока питания. Лучше применить дроссель на больший ток, тогда его нагрев будет существенно меньше. Индуктивность 4.7-22мкГн, зависит от выходного тока, так как дроссель на большой ток и индуктивность будет весьма большим.
Обычно дроссели выполняются либо в виде "гантельки", либо в "броневом" исполнении, вторые чаще предназначены для поверхностного монтажа.
В общих чертах на этом все, и конечно видеоверсия данной статьи. Как всегда буду рад вопросам и пожеланиям.
www.kirich.blog
МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
Собрал недавно очень неплохой лабораторный регулируемый блок питания по такой, многократно проверенной разными людьми схеме:
- Регулировка от 0 до 40 В (при ХХ и 36В по расчету с нагрузкой) + возможна стабилизация до 50 В, но мне надо было именно до 36 В.
- Регулировка тока от 0 до 6А (Imax устанавливается шунтом).
Имеет 3 вида защиты, если так можно назвать:
- Стабилизация по току (при превышении установленного тока — ограничивает его и любые изменения напряжения в сторону увеличения не вносят изменений)
- Триггерная защита по току (при превышении установленного тока отключает питание)
- Температурная защита (при превышении установленной температуры отключает питание на выходе) У себя ее не ставил.
Вот плата управления, основанная на LM324D.
С помощью 4х ОУ реализовано все управление стабилизацией и вся защита. В интернете более известна как ПиДБП. Данная версия — 16-я усовершенствованная, проверенная многими (v.16у2). Разрабатывается\лась на «Паяльнике». Проста в настройке, собирается буквально на коленке. Регулировка тока у меня довольно грубая и думаю стОит поставить еще дополнительную ручку точной настройки тока, помимо основной. На схеме справа есть пример как это сделать для регулировки напряжения, но можно применить и к регулировке тока. Питается все это от ИИП из одной из соседних тем, с квакающей «защитой»:
Как всегда, пришлось развернуть по своему ПП. Думаю о нем здесь особо не стоит говорить. Для умощнения стабилизатора установлены 4 транзистора TIP142:
Все на общем теплоотводе (радиатор от CPU). Для чего их так много? Во-первых — для увеличения выходного тока. Во-вторых — для распределения нагрузки на все 4 транзистора, что в последующем исключает перегрев и выход из строя на больших токах и больших разниц потенциалов. Ведь стабилизатор — линейный и плюс к этому всему, чем выше напряжение на входе и меньше напряжение на выходе, тем больше энергии рассеивается на транзисторах. В добавок у всех транзисторов есть определенные допуски по напряжению и току, для тех кто все это не знал. Вот схема подключения транзисторов в параллель:
Резисторы в эмиттерах можно устанавливать в пределах от 0.1 до 1 Ома, стоит учитывать, что при увеличении тока падение напряжения на них будет существенно и естественно нагрев неизбежен.
Все файлы — краткую информацию, схемы в .ms12 и .spl7, печатку от одного из людей на паяльнике (100% проверенная, все подписано, за что ему огромное спасибо!) в .lay6 формате, предоставляю в архиве. Ну и, наконец, видео работы защиты и немного информации о БП в целом:
Цифровой VA-метр в дальнейшем заменю, поскольку он не точен, шаг показаний большой. Сильно разнятся показания тока при отклонении от настроенного. Например выставим 3 А и на нем тоже 3 А, но когда снизим ток до 0.5 А, то он будет показывать 0.4 А, например. Но это уже другая тема. Автор статьи и фото — BFG5000.
Форум по ИП
Обсудить статью МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
radioskot.ru
что это такое, принцип работы, схема, назначение
Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?
Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.
Принцип работы импульсного блока питания
В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.
Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.
Разновидности блоков питания
Применение нашли несколько типов инверторов, которые отличаются схемой построения:
- бестрансформаторные;
- трансформаторные.
Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.
Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.
Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.
Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.
Схема БП
В схему самой распространенной конфигурации импульсного преобразователя входят:
- сетевой помехоподавляющий фильтр;
- выпрямитель;
- сглаживающий фильтр;
- широтно-импульсный преобразователь;
- ключевые транзисторы;
- выходной высокочастотный трансформатор;
- выходные выпрямители;
- выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.
Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.
В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.
ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:
- генерация высокочастотных импульсов;
- контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
- контроль и защита от перегрузок.
Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.
Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.
Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:
- высокая рабочая частота;
- сниженная емкость p-n перехода;
- малое падение напряжения.
Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.
Сфера применения импульсного блока питания
Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.
В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.
Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.
Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.
Как сделать импульсный блок питания своими руками
Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.
При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.
odinelectric.ru