65. Трехфазные двухскоростные двигатели
65. Трехфазные двухскоростные двигатели |
Трехфазные двигатели, позволяющие менять число оборотов, очень часто используются в воздушных охладителях для того, чтобы обеспечивать изменение расхода воздуха в соответствии с изменением его температуры: малая скорость (МС) при низкой температуре, например, зимой, и большая скорость (БС) при высокой температуре, например, летом (см. раздел 20.5).
Как правило, двухскоростными двигателями также оснащаются градирни (их работа подробно рассматривается в разделе 73). На рис. 65.1 показан вариант градирни, оборудованной двухскорост-ным двигателем (поз. 1) для привода центробежного вентилятора (поз. 2).
При выключенном вентиляторе и работающем компрессоре температура воды на входе в градирню (поз. 3) начинает повышаться. Термостат (поз. 4), установленный на выходе из градирни, обнаруживает подъем температуры и выдает команду на запуск двигателя с малой скоростью (МС). Если температура воды продолжает расти, термостат переводит двигатель на большую скорость (БС) и градирня работает с максимальной производительностью.
ДВИГАТЕЛЬ С ДВУМЯ РАЗДЕЛЬНЫМИ ОБМОТКАМИ
Это самый простой двигатель. Он представляет собой обычный двигатель, рассчитанный на одно значение напряжения трехфазного переменного тока и имеет клеммную коробку с 6 клеммами (поз. А на рис. 65.2). Схема подключения обмоток этого двигателя к клеммам показана в нижней части рис. 65.2.
Внутри такого двигателя имеются две абсолютно независимых обмотки, каждая из которых предназначена для реализации разного числа оборотов. Если питание подключено к клеммам Ш, IV и 1W двигатель вращается с малой скоростью МС (поз. В). Если питание подано на клеммы 2U, 2V и 2W, двигатель вращается с большой скоростью БС (поз. С).
ВНИМАНИЕ! Схема на рис. 65.2 очень похожа на схему двигателя с раздельным подключением обмоток PW (см. пункт 64.1). Чтобы избежать ошибок, внимательно ознакомьтесь с табличкой на корпусе двигателя и изучите схемы, в противном случае возможны непоправимые последствия.
Действительно, в отличие от двигателя PW, обмотки двухско-ростного двигателя, схема которого изображена на рис. 65.2, никогда не должны быть запитаны вместе, иначе двигатель мгновенно сгорит!
65.1. УПРАЖНЕНИЕ 1. Двигатель с раздельными обмотками |
Нарисуйте схему подключения обмоток и управления работой двухскоростного трехфазного двигателя, предназначенного для привода вентилятора градирни, зная, что переключение скоростей обеспечивается термостатом с двухступенчатой регулировкой температуры.
В помощь вам на рис. 65.3 приведено обозначение клемм, имеющееся внутри клеммной коробки.
Решение упражнения 1
Схема подключения обмоток представлена на рис. 65.4.
Треугольник вершиной вниз указывает на то, что между контакторами МС и БС существует механическая блокировка. Благодаря ей, как только один из контакторов замкнут, становится невозможным замкнуть другой контактор, даже если вы случайно нажали на него рукой.
Такой тип блокировки позволяет избежать ошибки, обусловленной человеческим фактором. Действительно, если замкнуть оба этих контактора одновременно, даже на несколько тысячных долей секунды, двигатель может мгновенно сгореть: напоминаем, что при нормальной температуре скорость электронов равна примерно 250000 км/с, то есть более чем 6 раз в секунду позволяет обернуться вокруг Земли!
Существует и другая опасность: представим себе, что двигатель вращается со скоростью 960 об/мин (МС) и в этот момент размыкается контактор МС и замыкается контактор БС, чтобы обеспечить вращение со скоростью 1450 об/мин, но в другом направлении! Момент сопротивления на валу двигателя в этом случае оказался бы невероятно большим, двигатель подвергся бы очень высоким механическим и электрическим нагрузкам и, в лучшем случае, сработало бы реле тепловой защиты. В худшем случае двигатель просто бы сгорел.
А кстати, прежде чем читать дальше, вы нарисовали схему управляющей цепи?
Принципиальная схема цепи управления представлена на рис. 65.5.
Допустим, что температура воды низкая. Тогда оба контакта 5 разомкнуты и обмотки МС, БС и R не за-питаны. Когда температура воды начнет расти, контакты 5-6 замыкаются и через нормально замкнутые контакты 6-7 реле R подается питание на реле МС, обеспечивающее работу двигателя на режиме МС.
При этом размыкаются нормально замкнутые контакты 8-9 реле МС. Когда расход теплой воды в градирню увеличится и температура воды поднимется еще больше, регулятор температуры замкнет контакты 5-8. В результате будет подано напряжение на реле R, вследствие чего разомкнутся контакты 6-7, обесточится реле МС и замкнутся контакты 8-9 реле МС. Напряжение поступит на реле БС и двигатель перейдет на режим БС (заметим, что в этом случае момент сопротивления на валу двигателя будет очень небольшим, поскольку двигатель уже работал на режиме МС).
Далее, если температура воды упадет, реле-регулятор температуры разомкнет контакты 5-8 второй ступени. Вследствие этого будет снято напряжение с реле БС и реле R. Контакты 6-7 реле R замкнутся, будет подано напряжение на реле МС, после чего разомкнутся контакты 8-9 и двигатель вновь перейдет на режим МС.
В нашем примере двигатель на режиме БС вращался со скоростью 1450 об/мин и, как только разомкнутся контакты 8-9, он тут же переходит на режим МС, когда вращение осуществляется со скоростью 960 об/мин. Иначе говоря, происходит мгновенное замедление скорости вращения от значения 1450 об/мин до значения 960 об/мин. Усилие, необходимое при этом для того, чтобы затормозить двигатель, является причиной возникновения значительных механических нагрузок и, как следствие, заметного пика по току в цепи питания обмотки МС.
В тот момент, когда по команде регулятора температуры размыкаются контакты 5-8 второй ступени, реле БС обесточивается, также как и обмотка реле R замедленного действия (рис. 65.6). Однако контакты 6-7 реле R остаются разомкнутыми в течение заданного времени задержки (в данном случае 3 секунды) после снятия с него напряжения. В течение этого времени у нас не подается напряжение ни на обмотку БС, ни на обмотку МС. Вращение двигателя замедляется, причем тем быстрее, чем больше момент сопротивления на вентиляторе.
Спустя 3 секунды контакты 6-7 реле R замыкаются.
К этому моменту вращение двигателя замедляется до скорости, близкой к 960 об/мин. На обмотку МС подается напряжение и двигатель продолжает вращаться со скоростью 960 об/мин не испытывая ни механических пиковых нагрузок, ни забросов по току.
vmestogaza.ru
Подключение двухскоростного электродвигателя — Электропривод
Что-б не плодить лишних тем и уменьшить количество бреда в инете чуть оживлю эту старую тему.
Если же подключать фазу к выводам U0, V0, W0, все становится намного проще (замкнут мост — вторая скорость, разомкнут — первая)
Вообщето так и надо. Предыдущий оратор вероятно оговорился посоветовав вам наоборот.
Вы правы. Но внимательно подумайте. Перемыччку можно ставить и так и так это по барабану .Что нулевые концы вместе что с единицей Всё равно получится двойная звезда.
«Предидущий» автор не оговорился! И там далеко не все равно, на какие выводы подавать фазы при переключении скоростей — движок ведет себя не адекватно, если подключить U0 V0 W0, а вторую сторону замыкать/размыкать мост, двигатель нормально будет работать только на высокой скорости, на малой мощность не развивает и быстро перегревается, даже если попутать «стороны» при нормальном переключении коммутации — работает не нормально, мощность не развивает ни на малой ни на высокой скорости, и скорости не нормальные — при коммутации на высокую — ниже низкой раза в два по ощущениям, коммутации на низкую — что-то среднее между низкой и высокой, и перегрев.
Так что там совсем не все равно, что замыкать и куда подавать сеть на разных режимах, обмотки одинаковые, а вот их укладка в статоре отличается.
Поводом для этого «оживления» послужило сегодняшнее мучение с аналогичным двухскоростным двигателем, пока не начало коммутироваться так, как нарисовано по схеме толку не было!
Так что, все верно, для малой скорости подключать U1 V1 W1, U0 V0 W0 — разомкнуты, для большой — фазы на U0 V0 W0, U1 V1 W1 замкнуть мостом
(Если не считать того, что в помещении уже прохладно, а отопление не включили, так хоть задницу погрел, пока провода перекручивал сидя на этом движке :crazy: )
Нецензурная лексика.
www.chipmaker.ru
Многоскоростные электродвигатели | двухскоростные | трехскоростные
- Электродвигатели АИР — характеристики и размеры
- Электродвигатели АМН (5АН, 5АМН, 4АМНУ) — технические характеристики.
- Электродвигатели взрывозащищенные АИМЛ, ВА (АИМ, 4ВР)
- Электродвигатели 4А, 4АМ — характеристики, размеры, отличие
- Электродвигатели с удлиненным валом (для моноблочных насосов)
- Электродвигатели АИС (RA, 6А, 6АМ) по стандартам CENELEC, DIN
- Электродвигатели с повышенным скольжением АИРС
- Двухскоростные электродвигатели АИС
- Однофазные электродвигатели АИРЕ, 220В
- Электродвигатели для привода осевых вентиляторов АИРП
Электродвигатели многоскоростные
Многоскоростные электродвигатели изготавливаются на базе основного исполнения односкоростных двигателей и подразделяются на:
- двухскоростные с отношением числа оборотов 1500/3000 (4/2 — число полюсов), 1000/1500 (6/4), 750/1500 (8/4), 750/1000 (8/6), 500/1000 (12/6)
- трехскоростные — 1000/1500/3000 (6/4/2), 750/1500/3000 (8/4/2), 750/1000/1500 (8/6/4)
- четырехскоростные — 500/750/1000/1500 (12/8/6/4)
Схемы подключения двухскоростных электродвигателей отличаются в зависимости от соотношения числа оборотов.
При соотношении 1/2, т.е — 1500/3000, 750/1500 и 500/1000 применяется следующая схема:
При соотношении 2/3 и 3/4, т.е -1000/1500, 750/1000 применяется другая схема:
Схема подключения трехскоростных электродвигателей:
Схема подключения четырехскоростных электродвигателей:
Основные технические характеристики двухскоростных двигателей
Марка | Мощн. кВт | Об/мин | Ток, А | Момент Н*м | Iп/Iн | Момент инерции кгм2 | Масса кг |
1500/3000 об/мин | |||||||
АИР132S4/2 | 6 | 1455 | 12,5 | 39,4 | 7 | 0,032 | 70 |
7,1 | 2900 | 14,6 | 23,4 | 7 | |||
АИР132М4/2 | 8,5 | 1455 | 17,3 | 55,8 | 7,5 | 0,045 | 83,5 |
9,5 | 2925 | 19,1 | 31 | 8,5 | |||
АИР180S4/2 | 17 | 1470 | 34,5 | 110 | 6,7 | 0,16 | 170 |
20 | 2930 | 39,3 | 65,2 | 6,4 | |||
АИР180М4/2 | 22 | 1470 | 43,7 | 143 | 7,5 | 0,2 | 190 |
26 | 2935 | 50,5 | 84,6 | 7,5 | |||
5А200М4/2 | 27 | 1475 | 53,4 | 175 | 7,4 | 0,27 | 245 |
35 | 2945 | 64,9 | 114 | 7,2 | |||
5А200L4/2 | 30 | 1470 | 57,6 | 195 | 7 | 0,32 | 270 |
38 | 2945 | 67,8 | 123 | 7 | |||
5А225М4/2 | 42 | 1480 | 81,7 | 271 | 7 | 0,5 | 345 |
48 | 2960 | 87,6 | 155 | 7,5 | |||
5АМ250S4/2 | 55 | 1485 | 102 | 354 | 7,3 | 1,2 | 485 |
60 | 2975 | 114 | 193 | 7,8 | |||
5АМ250М4/2 | 66 | 1485 | 121 | 424 | 7,2 | 1,7 | 520 |
80 | 2970 | 148 | 257 | 7,2 | |||
1000/1500 об/мин | |||||||
АИР132S6/4 | 5 | 965 | 12 | 49,5 | 5,6 | 0,053 | 68,5 |
5,5 | 1435 | 11,1 | 36,6 | 5,7 | |||
АИР132М6/4 | 6,7 | 970 | 16 | 66 | 6,2 | 0,074 | 81,5 |
7,5 | 1440 | 14,7 | 49,7 | 6,2 | |||
АИР180М6/4 | 15 | 975 | 33,6 | 147 | 6,6 | 0,27 | 180 |
17 | 1450 | 33 | 112 | 6 | |||
5А200М6/4 | 20 | 980 | 44 | 195 | 6,5 | 0,41 | 245 |
22 | 1460 | 42,2 | 144 | 6 | |||
5А200L6/4 | 24 | 980 | 55,2 | 234 | 6,9 | 0,46 | 265 |
27 | 1480 | 51,5 | 174 | 6,5 | |||
500/1000 об/мин | |||||||
АИР180М12/6 | 7 | 485 | 22,4 | 138 | 4,5 | 0,27 | 200 |
13 | 975 | 25,9 | 127 | 6 | |||
5А200М12/6 | 8 | 485 | 30,6 | 158 | 4 | 0,41 | 245 |
15 | 980 | 30,1 | 146 | 6 | |||
5А200L12/6 | 10 | 485 | 31,1 | 197 | 4 | 0,46 | 265 |
18,5 | 975 | 36,3 | 181 | 6 | |||
5А225М12/6 | 14 | 485 | 43,9 | 276 | 4 | 0,65 | 320 |
25 | 980 | 48,5 | 244 | 6 | |||
5АМ250S12/6 | 16 | 495 | 56,5 | 309 | 4,4 | 1,2 | 435 |
30 | 990 | 58,3 | 289 | 6,6 | |||
5АМ250М12/6 | 18,5 | 490 | 60,1 | 361 | 4 | 1,4 | 455 |
36 | 985 | 71,1 | 349 | 5,3 | |||
750/1500 об/мин | |||||||
АИР132S8/4 | 3,6 | 715 | 9,7 | 48,1 | 4,8 | 0,053 | 68,5 |
5 | 1435 | 10,3 | 33,3 | 5,9 | |||
АИР132М8/4 | 4,7 | 715 | 12,4 | 62,8 | 5 | 0,074 | 82 |
7,5 | 1440 | 15,8 | 49,7 | 6,4 | |||
АИР180М8/4 | 13 | 730 | 33,6 | 170 | 5,5 | 0,27 | 180 |
18,5 | 1465 | 35,9 | 121 | 6,7 | |||
5А200М8/4 | 15 | 730 | 40,2 | 196 | 5,3 | 0,41 | 245 |
22 | 1460 | 42,2 | 144 | 6,4 | |||
5А200L8/4 | 17 | 725 | 39 | 224 | 5 | 0,46 | 275 |
24 | 1450 | 45,5 | 158 | 5,5 | |||
5А225М8/4 | 23 | 735 | 55,3 | 299 | 5,5 | 0,7 | 330 |
34 | 1475 | 62,7 | 220 | 6,5 | |||
5АМ250S8/4 | 33 | 740 | 75,3 | 426 | 5,3 | 1,2 | 435 |
47 | 1480 | 87,2 | 303 | 6,4 | |||
5АМ250М8/4 | 37 | 740 | 81,5 | 478 | 6 | 1,4 | 465 |
55 | 1480 | 99,8 | 355 | 7 | |||
750/1000 об/мин | |||||||
АИР132S8/6 | 3,2 | 725 | 8,7 | 42,2 | 4,6 | 0,053 | 68,5 |
4 | 965 | 9,1 | 39,6 | 5 | |||
АИР132М8/6 | 4,5 | 720 | 11,9 | 59,7 | 5,4 | 0,074 | 81,5 |
5,5 | 970 | 12,3 | 54,1 | 6 | |||
АИР180М8/6 | 11 | 730 | 26,3 | 144 | 5,3 | 0,27 | 180 |
15 | 970 | 30,1 | 148 | 6 | |||
5А200М8/6 | 15 | 730 | 35,4 | 196 | 5,5 | 0,41 | 245 |
18,5 | 975 | 37,2 | 181 | 6 | |||
5А200L8/6 | 18,5 | 730 | 43,6 | 242 | 5,5 | 0,46 | 265 |
23 | 975 | 46,2 | 225 | 6 | |||
5А225М8/6 | 22 | 740 | 51,7 | 284 | 6 | 0,7 | 330 |
30 | 985 | 58,6 | 291 | 6 | |||
5АМ250S8/6 | 30 | 740 | 70,8 | 387 | 6 | 1,2 | 435 |
37 | 990 | 73,2 | 357 | 6,4 | |||
5АМ250М8/6 | 42 | 740 | 93,2 | 542 | 5,5 | 1,4 | 485 |
50 | 985 | 96,6 | 485 | 6,1 |
Основные технические характеристики трехскоростных двигателей
Марка | Мощность кВт | Об/мин | Ток А | Момент Н*м | Iп/Iн | Момент инерц. кгм2 | Вес кг |
1000/1500/3000 об/мин | |||||||
АИР132S6/4/2 | 2,8 | 955 | 7,6 | 28 | 5 | 0,053 | 70 |
4 | 1440 | 8,9 | 26,5 | 5 | |||
4,5 | 2895 | 9,7 | 14,8 | 6,3 | |||
АИР132М6/4/2 | 3,8 | 955 | 10,1 | 38 | 5,5 | 0,074 | 83,5 |
5,3 | 1440 | 11,3 | 35,1 | 6,5 | |||
6,3 | 2895 | 13 | 20,8 | 7 | |||
750/1500/3000 об/мин | |||||||
АИР132S8/4/2 | 1,8 | 710 | 6,1 | 24,2 | 4 | 0,053 | 70 |
3,4 | 1440 | 7,5 | 22,5 | 6 | |||
4 | 2895 | 8,6 | 13,2 | 6,5 | |||
АИР132М8/4/2 | 2,4 | 710 | 8,5 | 32,3 | 4,5 | 0,074 | 83,5 |
4,5 | 1440 | 9,8 | 29,8 | 6,3 | |||
5,6 | 2895 | 11,7 | 18,5 | 6,7 | |||
750/1000/1500 об/мин | |||||||
АИР132S8/6/4 | 1,9 | 710 | 6,4 | 25,5 | 4 | 0,053 | 68,5 |
2,4 | 950 | 6,1 | 24,1 | 4,4 | |||
3,4 | 1410 | 7,7 | 23 | 4,6 | |||
АИР132М8/6/4 | 2,8 | 720 | 9,4 | 37,1 | 4,5 | 0,074 | 81,5 |
3 | 960 | 7,7 | 29,8 | 5 | |||
5 | 1425 | 10,7 | 33,5 | 5,2 | |||
АИР180М8/6/4 | 8 | 740 | 22,9 | 103 | 5,4 | 0,27 | 180 |
11 | 975 | 24,3 | 108 | 6,1 | |||
12,5 | 1475 | 27 | 80,9 | 6,5 | |||
5А200М8/6/4 | 10 | 740 | 30,3 | 129 | 5,5 | 0,41 | 245 |
12 | 985 | 27 | 116 | 6 | |||
17 | 1475 | 36 | 110 | 6,5 | |||
5А200L8/6/4 | 12 | 735 | 31,6 | 156 | 5,3 | 0,46 | 270 |
15 | 985 | 31,9 | 145 | 6 | |||
20 | 1475 | 39,9 | 130 | 6,5 | |||
5А225М8/6/4 | 15 | 740 | 38,9 | 194 | 5,5 | 0,7 | 330 |
17 | 985 | 34,9 | 165 | 6,5 | |||
25 | 1480 | 48 | 160 | 6,3 | |||
5АМ250S8/6/4 | 22 | 740 | 52 | 284 | 5,7 | 1,2 | 435 |
25 | 990 | 51,1 | 241 | 7,6 | |||
33 | 1485 | 62,2 | 212 | 7 | |||
5АМ250М8/6/4 | 24 | 740 | 56,8 | 310 | 5,7 | 1,4 | 465 |
33 | 990 | 65,6 | 318 | 7,4 | |||
38 | 1485 | 71,7 | 244 | 6,8 |
Основные технические характеристики четырехскоростных двигателей
Марка | Мощность кВт | Об/мин | Ток А | Момент Н*м | Iп/Iн | Момент инерц. кгм2 | Вес кг |
500/750/1000/1500 об/мин | |||||||
АИР180М12/8/6/4 | 3 | 485 | 12,7 | 59,1 | 4,1 | 0,27 | 180 |
5 | 730 | 15,5 | 72 | 4,8 | |||
6 | 965 | 12,7 | 59,4 | 4,8 | |||
9 | 1465 | 18,6 | 58,7 | 6 | |||
5А200М12/8/6/4 | 4,5 | 490 | 16,8 | 87,7 | 3,5 | 0,41 | 245 |
8 | 735 | 20,5 | 104 | 4,5 | |||
9 | 980 | 18,9 | 87,7 | 5 | |||
12 | 1470 | 23,3 | 78 | 5,1 | |||
5А200L12/8/6/4 | 5 | 490 | 18,1 | 97,4 | 4 | 0,46 | 270 |
9 | 735 | 23,8 | 123 | 5 | |||
11 | 980 | 23,5 | 107 | 4,5 | |||
15 | 1470 | 29,5 | 97 | 5 | |||
5А225М12/8/6/4 | 7,1 | 490 | 26,4 | 138 | 4,5 | 0,7 | 325 |
13 | 740 | 36,6 | 168 | 6 | |||
14 | 985 | 28,4 | 136 | 6 | |||
20 | 1490 | 38,4 | 128 | 7,3 | |||
5АМ250S12/8/6/4 | 9 | 495 | 32,5 | 174 | 4,7 | 1,2 | 435 |
17 | 745 | 43,5 | 218 | 5,9 | |||
18,5 | 990 | 37,1 | 179 | 5,9 | |||
27 | 1485 | 52,4 | 173 | 7 | |||
5АМ250М12/8/6/4 | 12 | 495 | 42,2 | 232 | 4,8 | 1,4 | 465 |
21 | 745 | 51,7 | 269 | 6,1 | |||
24 | 990 | 47,6 | 232 | 6,6 | |||
30 | 1490 | 57,5 | 192 | 7,8 |
Цены на многоскоростные эл-двигатели составлют +(40-60)% к цене базового исполнения
electronpo.ru
Двухскоростной электродвигатель — ООО «СЗЭМО Электродвигатель»
Пожалуй, нет такой отрасли промышленности, где не используется оборудование с электродвигателями. Очень часто процесс работы ряда станков и механизмов требует ступенчатого регулирования скорости, поэтому одним из наиболее популярных вариантов комплектации является двухскоростной электродвигатель.
Двухскоростные электродвигатели – особенности конструкции
Несмотря на появление на рынке электротехники более современных двигателей с частотными преобразователями, двухскоростные агрегаты широко используются даже на самом современном оборудовании. Это объясняется рядом причин:
- Простота и надежность конструкции.
- Возможность развивать разную мощность на разных скоростях благодаря наличию двух пар обмоток на одном роторе, что позволяет получить две скорости вращения и две пары полюсов.
Двигатели с частотным преобразователем могут выдавать только постоянную мощность, соответственно, это несколько снижает сферу их использования.
Двухскоростные двигатели – сфера применения
Двухскоростные электродвигатели давно и успешно используются во многих отраслях сельского хозяйства и промышленности, в частности, при комплектации следующих видов оборудования:
- лебедок и крановых установок;
- лифтов и других подъемных механизмов;
- станков для химической промышленности и металлургии;
- вентиляторов;
- циркуляционных механизмов;
- буровых установок.
Кроме того, подобные силовые агрегаты устанавливаются на бытовом оборудовании, станках, профессиональной технике (в столовых, прачечных и пр.), применяются в судостроении (для приведения в движение гребных винтов).
Таким образом, двухскоростные электродвигатели отличаются:
- невысоким уровнем шума;
- минимальной вибрацией;
- высокой производительностью;
- высоким пусковым моментом.
В зависимости от модели, эти двигатели предназначены для использования в разных климатических условиях, в частности, в:
- умеренном климате;
- умеренно холодном климате;
- морском и речном климате (т.е. в условиях повышенной влажности).
Разнообразие сфер применения данных агрегатов в полной мере обусловлено вышеизложенными характеристиками.
Схемы подключения
Данные двигатели производятся на базе односкоростных, следовательно, габариты и параметры и принципы подсоединения практически одинаковы.
Отличия следующие:
- Обмотка статора. Возможны два варианта: одна или две независимые обмотки. В первом случае путем переключения полюсов можно получить изменение скорости в пропорции 1:2, во втором случае – 1:4. Двигатели второго типа часто используются в подъемных механизмах: например, кабина лифта двигается на определенной скорости между этажами, а по мере приближения к конечной точке скорость понижается.
- Иногда может варьироваться форма пазов ротора и длина сердечников.
Существуют различные схемы подключения двухскоростных электродвигателей. Самый распространенный тип – мотор, работающий с 2-4 полюсами, который имеет одну обмотку с подключением Даландера. Если необходима меньшая скорость запуска, то подключение производится между фазами двигателя треугольником. При запуске на большей скорости двигатель работает с двумя полюсами, а подключение осуществляется в виде двойной трехлучевой звезды. При автоматическом запуске для моторов данного типа применяются три контактора.
Кроме того, выделяются следующие типы подключений:
- Обмотка Даландера плюс независимая обмотка.
- Две обмотки Даландера.
- Две независимые обмотки, взаимодействующие с разным числом полюсов. Подключение производится «звездой».
www.szemo.ru
Возня с двухскоростным двигателем. Перевод с трехфазки 380В на однофазную 220В — Электропривод
Доброго времени суток всем!
Вчера посвятил часть выходного на оживление Jet JMD-45PFD.
К сожалению, сеть трехфазная ожидается только к весне. Долго ждать не стал.
Взялся за переделку электрической части станка.
На нем установлен двухскоростной двигатель, переключающийся на различные скорости путем изменения конфигурации подключения «треугольник с двумя последовательными обмотками — звезда с параллельно включаемыми обмотками» статора.
Пришлось разобрать двигатель и вывести на «поверхность» двенадцать проводов. При этом для подключения к однофазной сети через частотный регулятор удалось использовать только половинку из обмоток статора.
Собрал один «треугольник». Все пошло нормально.
Собрал параллельно еще один, но из-за особенностей намотки статора, получилось, что второй «треугольник» смещен по фазе на 60 градусов относительно первого. Поэтому, получил быстый нагрев двигателя. Пришлось отключить экспериментальные параллельности.
Запустил на половинчатой мощности от номинальной, т.к. половина статора не работает.
Зато генератор переменного тока получился. :pardon: На каждой из освободившихся обмоток вырабатывается ЭДС равная приложенному напряжению к двигателю. Жаль, что они по фазе сдвинуты.
Как я понимаю, заниматься подключением этих свободных обмоток через фазосдвигающую цепь нет смысла, т.к нормальной работы с использованием конденсаторов все равно не будет, а эффект будет незначительным.
Вместо 1.1 кВт получил примерно 600 Вт.
Опробовал. Маленькие фрезы «крутит» с нагрузкой на металл. Большие не пробовал. Да и смысла особого нет. Надо искать подходящий двигатель односкоростной. А уменьшить ее всегда можно будет частотником.
Несколько снимков для иллюстрации поста…
Если есть мнение или совет — буду рад обсудить.
В дружеском формате, Виктор.
www.chipmaker.ru
звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
Двигатель для однофазной сети 220В
(~ 1, 220В)
Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)
Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)
Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
— использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.
www.ampika.ru
Подключение трехфазного двигателя к трехфазной сети: существующие схемы
При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?
Схемы подключения
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
- Звезда.
- Треугольник.
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.
Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.
Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.
Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.
При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Схема звезда-треугольник
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
Подключение электрического двигателя через магнитный пускатель
В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».
Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.
Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».
Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.
onlineelektrik.ru