Схема строения нервной системы – Строение нервной системы человека, ее функциональное деление (Таблицы, Схемы)

Значение и общий план строения нервной системы.

Нервная система – самая важная система организма, объединяющая деятельность всех органов и обеспечивающая его взаимодействие с окружающей средой.

Нервная система выполняет контролирующие, координирующие и регуляторные функции, обеспечивая согласованную работу всех систем органов, связь организма с внешней средой, поддержание постоянства состава его внутренней среды. Функциональное состояние организма оказывает влияние на состояние нервной системы.

Нервная система условно делится на центральную и периферическую. Центральная нервная система образована головным и спинным мозгом. Периферическая нервная система состоит из черепно-мозговых и спинно-мозговых нервов с их корешками, ветвями и нервными окончаниями, а также нервными узлами, или ганглиями.

Часть периферической нервной системы, иннервирующую скелетную мускулатуру и обеспечивающую связь организма с внешней средой, называют

 соматической нервной системой. Другую часть периферической нервной системы, отвечающую за иннервацию внутренних органов, гладкой мускулатуры, сосудов, регуляцию обменных процессов, называютвегетативной, или автономной, нервной системой. Вегетативная нервная система, в свою очередь, делится на парасимпатическую и симпатическую.

Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Нейроны состоят из тела и отростков. Длинный единичный отросток, по которому нервный импульс передается от тела нейрона, называют аксоном. Короткие отростки, по которым импульс проводится к телу нейрона, называют дендритами. Их может быть один или несколько.

Нейроны связаны между собой синапсами, осуществляющими передачу нервного импульса с одного нейрона на другой. Синапсы могут возникать между аксоном одного нейрона и телом другого, между аксонами и дендритами соседних нейронов, между одноименными отростками нейронов.

Импульсы в синапсах передаются с помощью нейромедиаторов — биологически активных веществ — норадреналина, ацетилхолина, серотонина и др. Реагируя со специфическими молекулами рецепторных белков, молекулы медиаторов меняют проницаемость клеточной мембраны для ионов Са2+, К+ и Сl. Это приводит к деполяризации клеточной мембраны и возникновению потенциала действия.

В зависимости от функции выделяют следующие типы нейронов:

• чувствительные, или рецепторные, тела которых лежат вне ЦНС. Они передают импульс от рецепторов в ЦНС;

• вставочные, осуществляющие передачу возбуждения с чувствительного на исполнительный нейрон. Эти нейроны лежат в пределах ЦНС;

• исполнительные, или двигательные, тела которых находятся в ЦНС или в симпатических и парасимпатических узлах

Они обеспечивают передачу импульсов от ЦНС к рабочим органам.

  1. Нейрон и нервное волокно как основные структурные единицы нервной ткани.

Нейроны — нервные клетки, структурно-функциональные единицы нервной системы, имеют отростки, которые образуют звездчатую форму нейронов. Различаютдендриты — отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей, и аксоны — отростки, передающие нервные сигналы от тела клетки к иннервируемым органам и другим нервным клеткам. Дендритов у нейрона может быть много, аксон только один.

Строение нейронов

Тело клетки. Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов(билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). 

Аксон — обычно длинный отросток нейрона, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты — как правило, короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона.

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. 

 По функцииразличают чувствительные (сенсорные), двигательные (моторные) и вставочные нейроны.

Разные по функции нейроны соединяются между собой в цепь,образуя рефлекторные дуги, по к-рым передаётся возбуждение и осуществляются рефлекторные реакции организма . Место контакта двух нейронов или нейрона с др. тканевым элементом наз. синапсом

Не́рвные воло́кна — длинные отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон намиелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его миелиновой оболочкой. В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый (мякотный) тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый (безмякотный) тип.

studfile.net

Общее представление о строении ЦНС

Второе высшее образование «психология» в формате MBA

предмет:
Анатомия и эволюция нервной системы человека.
Методичка «Анатомия центральной нервной системы»

2.1. Общая схема строения ЦНС
2.2. Полости мозга и ликвор
2.3. Мозговые оболочки

2.1. Общая схема строения ЦНС
В нервной системе выделяют центральную и периферическую нервную систему.

Периферическая нервная система представлена:
корешками спинного мозга,
нервными сплетениями,
нервными узлами (ганглиями),
нервами,
периферическими нервными окончаниями (рис. 2.1).

Рис. 2.1. Составные части периферической нервной системы

:

В свою очередь, нервные окончания могут быть:
а) эфферентными (двигательными), которые передают возбуждение от нервов к мышцам и железам;
б) афферентными (чувствительными), передающими информацию от рецепторов к центральной нервной системе.

Центральная нервная система человека состоит из головного и спинного мозга.
Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками.
Головной мозг является расширением спинного мозга.

У далеких предков хордовых животных (например, у ланцетника) нервная трубка одинакового диаметра на всем протяжении, и головной мозг практически отсутствует. У рыб головной мозг уже хорошо развит, и с каждой ступенью эволюции он увеличивается. Наивысшего развития головной мозг достигает у человека, который имеет самый большой показатель цефализации (отношения массы мозга к массе тела) среди всех других живых существ.

Макроскопически (невооруженным глазом) на срезе мозга можно выделить белое и серое вещество.
Белое вещество представляет собой пучки нервных волокон и формирует проводящие пути. Так как большая часть длинных нервных отростков покрыта слоем белого жироподобного вещества (миелина), то их скопления имеют белый цвет.
Серое вещество — это тела нейронов, формирующих нервные центры. Серое вещество в центральной нервной системе образует два типа скоплений (структур): ядерные структуры (ядра спинного мозга, ствола мозга и больших полушарий), в которых клетки лежат тесными группами, и экранные структуры (кора больших полушарий и мозжечка), в которых клетки лежат слоями.

Головной мозг
залегает в полости черепа. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г. Между массой мозга и интеллектуальными способностями человека нет однозначной связи. Так, мозг И. С. Тургенева достигал массы почти 2 кг, а у французского писателя Анатоля Франса весил чуть больше одного килограмма. Тем не менее, их вклад в мировую литературу равновелик.

Анатомически в головном мозге можно различить полушария, ствол и мозжечок (малый мозг).

Ствол включает в себя продолговатый мозг, мост, средний мозг и промежуточный мозг (рис. 2.2).

Рис. 2.2. Анатомические отделы головного мозга

Существует и другая классификация отделов головного мозга, которая ориентируется на особенности развития того или иного отдела (в процессе онтогенеза). Если отделы головного мозга выделять, опираясь на процессы эмбрионального развития (в соответствии со стадией трех мозговых пузырей), то головней мозг можно разделить на

передний, средний и задний (ромбовидный) мозг. В соответствии с таким подходом к переднему мозгу относят большие полушария и промежуточный мозг, к среднему — средний мозг, к ромбовидному (развивающемуся из заднего мозгового пузыря) — продолговатый мозг, задний мозг и перешеек ромбовидного мозга (рис. 2.3).

Рис. 2.3. Онтогенетическая классификация отделов головного мозга


Левое и правое полушария конечного мозга разделены продольной щелью, дном которой является мозолистое тело. С мозжечком их разграничивает поперечная щель. Вся поверхность полушарий покрыта бороздами и извилинами, наиболее крупная из них — боковая, или сильвиева, она отделяет лобную долю полушарий от височной.

На сагиттальном разрезе мозга видны медиальная поверхность полушарий большого мозга, структуры ствола мозга и мозжечка (рис. 2.4).

Рис. 2.4. Сагиттальный разрез головного мозга человека:

1 — полушарие переднего мозга;
2 — мозжечок;
3 — продолговатый мозг;
4 — мост;
5 —средний мозг;
6 — промежуточный мозг;
7 — мозолистое тело

От головного мозга отходят 12 пар черепно-мозговых нервов, иннервирующих преимущественно голову, ряд мышц шеи и затылка, а также осуществляющих парасимпатическую иннервацию внутренних органов. От спинного мозга отходит 31 пара спинномозговых нервов, иннервирующих туловище и внутренние органы.

Кора полушарий отделена бороздой от мозолистого тела. Мозолистое тело является большой спайкой мозга, имеет волокнистую структуру. Под мозолистым телом располагается тонкая белая полоска — свод.

2.2. Полости мозга и ликвор
В процессе эмбрионального развития полости мозговых пузырей преобразуются в желудочки мозга. В левом и правом полушариях соответственно расположены I и II желудочки, в промежуточном мозге — III желудочек, в ромбовидном мозге — IV желудочек. Третий и четвертый желудочки соединены сильвиевым водопроводом, проходящем в среднем мозге. Полости мозга заполнены спинномозговой (цереброспинальной) жидкостью — ликвором. Они сообщаются между собой, а также со спинномозговым каналом и нодиаутинным пространством (пространством под одной из оболочек мозга) (рис. 2.5).

Рис. 2.5. Схема полостей мозга

Цереброспинальная жидкость продуцируется сосудистыми сплетениями желудочков мозга, имеющими железистое строение, а всасывается венами мягкой оболочки мозга. Процессы образования и всасывания ликвора протекают непрерывно, обеспечивая 4-5-кратный обмен цереброспинальной жидкости в течение одних суток. В полости черепа присутствует относительная недостаточность всасывания ликвора (т. е. ликвора всасывается меньше, чем продуцируется), а во внутрипозвоночном канале преобладает относительная недостаточность выработки ликвора (ликвора продуцируется меньше, чем всасывается). При нарушении ликвородинамики между головным и спинным мозгом в полости черепа развивается чрезмерное накопление ликвора, а в субарахноидальном пространстве спинного мозга жидкость быстро всасывается и концентрируется.

Циркуляция ликвора зависит от пульсации сосудов мозга, дыхания, движений головы, интенсивности образования и всасывания самого ликвора.

Из боковых желудочков мозга, где, повторимся, доминирует образование ликвора над его всасыванием, цереброспинальная жидкость попадает в III желудочек мозга и далее, по водопроводу мозга, — в IV желудочек, откуда через отверстия Лушки ликвор попадает в большую цистерну и наружное субарахноидальное пространство головного мозга, центральный канал и субарахноидальное пространство спинного мозга и в конечную цистерну спинного мозга.

Функции цереброспинальной жидкости
• Механическая защита мозга.
• Амортизация изменений осмотического давления.
• Поддержание трофических и обменных процессов между кровью и мозгом.

2.3. Мозговые оболочки
Головной и спинной мозг окружены оболочками, выполняющими защитные функции.

Выделяют твердую, паутинную и мягкую мозговую оболочку.

Твердая мозговая оболочка расположена наиболее поверхностно.
Паутинная (арахноидальная) оболочка занимает срединное положение.
Мягкая оболочка непосредственно прилегает к поверхности мозга. Она как бы «окутывает мозг», заходя во все борозды, и отделена от паутинной оболочки субарахноидальным пространством, заполненным цереброспинальной жидкостью.  Между мягкой и паутинной оболочками натянуты тяжи и пластинки, таким образом, проходящие в них сосуды оказываются «подвешенными». Субарохноидальное пространство формирует расширения, или цистерны, заполненные ликвором. Выделяют мостомозжечковую (большую) цистерну, межножковую цистерну, хиазмальпую цистерну, конечную цистерну (спинного мозга).

От гнердон мозговой оболочки паутинная отделена капиллярным субральным пространством. Имеет в своем составе два листка.. Наружный листок прикрепляется к черепу изнутри и высылает внутренний канал позвоночника, составляя их надкосницу. Внутренний листок сращен с наружным (образуя в местах сращения так называемые мозговые синусы ложа для оттока венозной крови от мозга и головы). Между наружным листкоми костями черепа и позвонками находится эпидуральное пространство.

Все лекции по предмету: Анатомия и эволюция нервной системы человека

anchiktigra.livejournal.com

Нервная система человека. Классификация, органы и функции

Человеческий организм — многоступенчатая структура, каждый орган и система которой тесно взаимосвязаны друг с другом и с окружающей средой. А чтобы эта связь не прерывалась ни на доли секунды, предусмотрена нервная система — сложнейшая сеть, пронизывающая всё тело человека и отвечающая за саморегуляцию и способность адекватно реагировать на внешние и внутренние раздражители. Благодаря слаженной работе нервной системы человек может подстраиваться под факторы внешнего мира: любое, даже незначительное, изменение в окружающей среде заставляет нервные клетки передавать сотни импульсов с невероятно высокой скоростью, чтобы организм мог моментально адаптироваться к новым для себя условиям. Аналогичным образом работает и внутренняя саморегуляция, при которой деятельность клеток координируется в соответствии с текущими потребностями.

Функции нервной системы затрагивают наиважнейшие процессы жизнедеятельности, без которых немыслимо нормальное существование организма. К ним относятся:

  • регуляция работы внутренних органов в соответствии с внешними и внутренними импульсами;
  • координация всех единиц организма, начиная с мельчайших клеток и заканчивая системами органов;
  • гармоничное взаимодействие человека с окружающей средой;
  • основа высших психофизиологических процессов, свойственных человеку.

Как устроен этот сложный механизм? Какими клетками, тканями и органами представлена нервная система человека и за что отвечает каждый из её отделов? Краткий экскурс в основы анатомии и физиологии человеческого тела поможет найти ответы на эти вопросы.

Организация нервной системы человека

Нервные клетки охватывают весь организм целиком, формируя разветвлённую сеть волокон и окончаний. Эта система, с одной стороны, объединяет каждую клеточку организма, заставляя работать в одном направлении, а с другой — интегрирует конкретного человека в окружающую среду, уравновешивая его потребности с внешними факторами. Нервная система обеспечивает нормальные процессы пищеварения, дыхания, кровообращения, формирования иммунитета, метаболизма и т. д. — словом, всё то, без чего немыслима нормальная жизнедеятельность.

нервная система

Эффективность нервной системы зависит от правильного формирования рефлекса — ответной реакции организма на раздражение. Любое воздействие, будь то внешние изменения или внутренняя разбалансировка, запускает цепочку импульсов, которые моментально влияют на организм, а он, в свою очередь, формирует ответную реакцию. Таким образом нервная система человека формирует единство тканей, органов и систем человеческого тела друг с другом и с окружающим миром.

Вся нервная система состоит из миллионов нервных клеток — нейронов, или нейроцитов, каждый из которых имеет тело и несколько отростков.

Классификация отростков нейрона зависит от того, какую функцию он выполняет:

  • аксон отправляет нервный импульс от тела нейрона в другую нервную клетку либо же конечную цель цепочки — ткань или орган, который должен совершить определённое действие;
  • дендрит принимает отправленный импульс и приводит его к телу нейрона.

Благодаря тому, что каждая нервная клетка поляризована, цепочка нервных импульсов никогда не меняет направление, попадая в нужное русло. Таким образом продвигается каждый нервный импульс, инициируя работу мышц, внутренних органов и систем.

Разновидности нервных клеток

Прежде чем рассматривать нервную систему в комплексе, необходимо разобраться, из каких функциональных единиц она состоит. В состав НС входят:

  1. Чувствительные нейроны. Расположены в нервных узлах, которые получают информацию непосредственно от рецепторов.
  2. Вставочные нейроны — промежуточное звено, благодаря которому полученный импульс передаётся от чувствительных нейронов далее по цепочке.
  3. Двигательные нейроны. Выступают инициаторами ответной реакции на раздражитель, передавая сигнал от мозга к мышцам или железам, которые в норме должны выполнять возложенную на них функцию.
строение нейронов

Именно по такой схеме строится любая ответная реакция организма человека на внешний или внутренний сигнал-раздражитель, который выступает толчком для конкретного действия. Как правило, прохождение нервного импульса занимает считанные доли секунды, если же это время затягивается или цепочка прерывается, это свидетельствует о наличии патологии нервной системы и требует серьёзной диагностики.

Строение и типы нервной системы: структурная классификация

Чтобы упростить структуру нервной системы, в медицине существует несколько вариантов классификаций в зависимости от строения и выполняемых функций. Так, анатомически нервную систему человека можно разделить на 2 обширные группы:

  • центральную (ЦНС), образованную головным и спинным мозгом;
  • периферическую (ПНС), представленную нервными узлами, окончаниями и непосредственно нервами.

Основа этой классификации предельно проста: центральная нервная система является своего рода связующим звеном, в котором осуществляется анализ поступившего импульса и дальнейшая регуляция деятельности органов и систем. А ПНС служит для транспортировки поступившего сигнала от рецепторов к ЦНС и последующего активатора, но уже от ЦНС к клеткам и тканям, которые будут выполнять конкретное действие.

Центральная нервная система

ЦНС является ключевой составляющей нервной системы, ведь именно здесь формируются основные рефлексы. Она состоит из спинного и головного мозга, каждый из которых надёжно защищён от внешнего воздействия костными структурами. Столь продуманная защита необходима, поскольку каждый отдел ЦНС выполняет жизненно важные функции, без которых невозможно поддержание здоровья.

Спинной мозг

Эта структура заключена внутри позвоночного столба. Она отвечает за простейшие рефлексы и непроизвольные реакции организма на раздражитель.

спинной мозг

Кроме того, нейроны спинного мозга координируют деятельность мышечной ткани, регулирующей защитные механизмы. Например, почувствовав экстремально горячую температуру, человек непроизвольно одёргивает ладонь, защищаясь тем самым от термического ожога. Это и есть типичная реакция, контролируемая спинным мозгом.

Головной мозг

Головной мозг человека состоит из нескольких отделов, каждый из которых выполняет ряд физиологических и психологических функций:

  1. Продолговатый мозг ответственен за жизненно важные функции организма — пищеварение, дыхание, движение крови по сосудам и т. д. Кроме того, здесь располагается ядро блуждающего нерва, который регулирует вегетативный баланс и психоэмоциональную реакцию. Если ядро блуждающего нерва посылает активные импульсы, жизненный тонус человека понижается, он становится апатичным, меланхоличным и депрессивным. Если же активность импульсов, исходящих из ядра, снижается, психологическое восприятие мира меняется на более активное и позитивное.
  2. Мозжечок регулирует точность и координацию движений.
  3. Средний мозг — главный координатор мышечных рефлексов и тонуса. Кроме того, нейроны, регулируемые этим отделом ЦНС, способствуют адаптации органов чувств к внешним раздражителям (например, аккомодация зрачка в сумерках).
  4. Промежуточный мозг образован таламусом и гипоталамусом. Таламус — важнейший орган-анализатор поступающей информации. В гипоталамусе регулируется эмоциональный фон и метаболические процессы, там расположены центры, отвечающие за ощущение голода, жажды, усталости, терморегуляции, сексуальной активности. Благодаря этому координируются не только физиологические процессы, но и многие привычки человека, например склонность к перееданию, восприятие холода и т. д.
  5. Кора больших полушарий. Кора головного мозга является ключевым звеном психических функций, включая сознание, речь, восприятие информации и последующее её осмысление. Лобная доля регулирует двигательную активность, теменная отвечает за телесные ощущения, височная контролирует слух, речь и другие высшие функции, а затылочная содержит центры зрительного восприятия.
головной мозг

Периферическая нервная система

ПНС обеспечивает взаимосвязь между органами, тканями, клетками и ЦНС. Структурно она представлена следующими морфофункциональными единицами:

  1. Нервными волокнами, которые в зависимости от выполняемых функций бывают двигательными, чувствительными и смешанными. Двигательные нервы передают информацию от ЦНС к мышечным волокнам, чувствительные, наоборот, помогают воспринимать полученную с помощью органов чувств информацию и передавать её к ЦНС, а смешанные в той или иной степени участвуют в обоих процессах.
  2. Нервными окончаниями, которые также бывают двигательными и чувствительными. Их функция ничем не отличается от волоконных структур с единственным нюансом — нервными окончаниями начинается или, наоборот, заканчивается цепочка импульсов от органов к ЦНС и обратно.
  3. Нервными узлами, или ганглиями, — скоплениями нейронов за пределами ЦНС. Спинномозговые ганглии отвечают за передачу информации, полученной из внешней среды, а вегетативные — данные о состоянии и активности внутренних органов и ресурсов организма.

Кроме того, все периферические нервы классифицируют в зависимости от их анатомических особенностей. Исходя из этой характеристики, выделяют 12 пар черепных нервов, которые координируют деятельность головы и шеи, и 31 пару спинномозговых нервов, отвечающих за туловище, верхние и нижние конечности, а также внутренние органы, расположенные в брюшной и грудной полостях.

Черепные нервы берут своё начало от головного мозга. Основу их деятельности составляет восприятие сенсорных импульсов, а также частичное участие в дыхательной, пищеварительной и сердечной деятельности. Более подробно функция каждой пары черепных нервов представлена в таблице.

№ п/п Название Функция
I Обонятельный Отвечает за восприятие различных запахов, передавая нервные импульсы от органа обоняния к соответствующему центру головного мозга.
II Зрительный Регулирует восприятие данных, полученных зрительно, доставляя импульсы от сетчатки глаза.
III Глазодвигательный Координирует движение глазных яблок.
IV Блоковый Наряду с глазодвигательной парой нервов принимает участие в скоординированной подвижности глаз.
V Тройничный Отвечает за сенсорное восприятие лицевой области, а также участвует в акте пережёвывания пищи в ротовой полости.
VI Отводящий Ещё один нерв, регулирующий движения глазных яблок.
VII Лицевой Нерв, координирующий мимические сокращения лицевых мышц. Кроме того, эта пара отвечает ещё и за вкусовое восприятие, передавая сигналы от сосочков языка к мозговому центру.
VIII Преддверно-улитковый Эта пара отвечает за восприятие звуков и умение поддерживать равновесие.
IX Языкоглоточный Регулирует нормальную деятельность глоточных мышц и частично передаёт вкусовые ощущения к мозговому центру.
X Блуждающий Один из самых значимых черепных нервов, от функциональности которого зависит деятельность внутренних органов, расположенных в области шеи, грудной и брюшной стенки. К ним относится глотка, гортань, лёгкие, сердечная мышца и органы пищеварительного тракта.
XI Спинной Отвечает за сокращения мышечных волокон шейного и плечевого отделов.
XII Подъязычный Координирует активность языка и частично формирует речевой навык.

Деятельность спинномозговых нервов классифицируется куда проще — каждая конкретная пара или комплекс пар отвечает за отведённый ему участок туловища с одноимённым названием:

  • шейных — 8 пар,
  • грудных — 12 пар,
  • поясничных и крестцовых — по 5 пар соответственно,
  • копчиковых — 1 пара.

Каждый представитель этой группы относится к смешанным нервам, образованным двумя корешками: чувствительным и двигательным. Именно поэтому спинномозговые нервы могут и воспринимать раздражающее воздействие, передавая импульс по цепочке, и активизировать деятельность в ответ на посыл от ЦНС.

ЦНС

Морфофункциональное деление нервной системы

Существует также функциональная классификация отделов нервной системы, в состав которой входят:

  • Соматическая нервная система, регулирующая функции скелетной мускулатуры. Она контролируется корой головного мозга, поэтому полностью подчинена сознательным решениям человека.
  • Вегетативная нервная система, отвечающая за деятельность внутренних органов. Её центры расположены в стволовой части мозга, а потому сознательно она никак не регулируется.

Кроме того, вегетативная система подразделяется ещё на 2 значимых функциональных отдела:

  • Симпатический. Активизируется при энергозатратах;
  • Парасимпатический. Отвечает за период восстановления организма.
симпатическая нервная система

Соматическая нервная система

Соматика — это отдел нервной системы, который отвечает за доставку моторных и чувствительных импульсов от рецепторов к органам центральной нервной системы и обратно. Большая часть нервных волокон соматической системы сосредоточена в коже, мышечном каркасе и органах, отвечающих за сенсорное восприятие. Именно соматическая нервная система практически на 100 % координирует сознательную часть активности человеческого тела и обработку информации, полученной от рецепторов органов чувств.

Основными элементами соматики являются 2 разновидности нейронов:

  • сенсорные, или афферентные. Регулируют доставку информации к клеткам ЦНС;
  • моторные, или эфферентные. Работают в обратном направлении, транспортируя нервные импульсы от ЦНС к клеткам и тканям.

И те и другие нейроны тянутся от отделов ЦНС прямо к конечной цели импульсов, то есть к мышечным и рецепторным клеткам, причём тело в большинстве случаев располагается непосредственно в центральной части нервной системы, а отростки достигают необходимой локализации.

Помимо сознательной деятельности, соматика включает также часть рефлексов, контролируемых неосознанно. С помощью таких реакций мышечная система приходит в активное состояние, не дожидаясь импульса от головного мозга, что позволяет действовать инстинктивно. Такой процесс возможен в том случае, если пути нервных волокон проходят непосредственно через спинной мозг. Примером подобных действий служит одёргивание руки при ощущении высокой температуры или коленный рефлекс при ударе молоточком по сухожилию.

Вегетативная нервная система

Вегетатика, или автономная нервная система, — отдел, координирующий активность преимущественно внутренних органов. Поскольку основные процессы жизнедеятельности — дыхание, метаболизм, сердечные сокращения, кровоток и т. д. — не подчинены сознанию, вегетативные нервные волокна реагируют преимущественно на изменения, происходящие во внутренней среде организма, оставаясь безучастными к сознательным импульсам. Благодаря этому в организме поддерживаются оптимальные условия для обеспечения энергоресурсами, необходимыми в конкретной ситуации.

вегетативная нервная система

Особенности вегетативной нервной деятельности подразумевают, что основные волокна сосредоточены не только в органах ЦНС, но и в остальных тканях человеческого тела. Многочисленные узлы рассеяны по всему организму, образуя автономную нервную систему вне пределов ЦНС, между мозговыми центрами и органами. Такая сеть может регулировать простейшие функции, однако более сложные механизмы всё же остаются под непосредственным контролем центральной нервной системы.

Ключевая роль вегетатики заключается в поддержании относительно постоянного гомеостаза путём самонастройки активности внутренних органов в зависимости от потребностей организма. Так, вегетативные волокна оптимизируют секрецию гормонов, скорость и интенсивность кровоснабжения тканей, интенсивность и частоту дыхания и сердечных сокращений и другие ключевые механизмы, которые должны реагировать на изменения внешней среды (например, при интенсивной физической нагрузке, повышении температуры или влажности воздуха, атмосферного давления и т. д.). Благодаря этим процессам обеспечиваются компенсаторные и приспособительные реакции, поддерживающие организм в оптимальной форме при любых обстоятельствах. Поскольку бессознательная деятельность внутренних органов может регулироваться в двух направлениях (активация и подавление), вегетатику также можно условно разделить на 2 отдела — парасимпатический и симпатический.

Симпатическая нервная система

Симпатический отдел вегетатики напрямую связан со спинномозговым веществом, расположенным от первого грудного до третьего поясничного позвонка. Именно здесь осуществляется стимуляция деятельности внутренних органов, необходимая во время повышенной энергозатраты — при физических нагрузках, во время стресса, интенсивной работы или эмоциональном потрясении. Такие механизмы позволяют поддержать организм, обеспечив его ресурсами, необходимыми для преодоления неблагоприятных условий.

Под воздействием симпатики учащается дыхание и пульсация сосудов, благодаря чему ткани лучше снабжаются кислородом, из клеток быстрее высвобождается энергия. Благодаря этому человек может активнее трудиться, справляясь с повышенными нагрузками в условиях неблагополучия. Однако эти ресурсы не могут быть бесконечными: рано или поздно количество запасов энергии снижается, и тело уже не может функционировать «на повышенных оборотах» без передышки. Тогда в работу включается парасимпатический отдел вегетатики.

Парасимпатическая нервная система

Парасимпатическая нервная система локализована в среднем мозге и крестцовом отделах позвоночного столба. Она, в отличие от симпатики, ответственна за сохранение и накопление энергетического депо, снижение физической активности и полноценный отдых.

Так, например, парасимпатика замедляет ЧСС во время сна или физического отдыха, когда человек восстанавливает потраченные силы, справляясь с усталостью. Дополнительно в это время активизируются перистальтические процессы, положительным образом сказывающиеся на метаболизме и, как следствие, на восстановлении запасов питательных веществ. Благодаря такой саморегуляции включаются защитные механизмы, особенно важные при критическом уровне переутомления или истощения — тело человека просто-напросто отказывается продолжать работу, требуя время для отдыха и восстановления.

Особенности и отличия симпатической и парасимпатической нервной системы

На первый взгляд может показаться, что симпатический и парасимпатический отделы — антагонисты, однако на самом деле это не так. Оба этих отдела действуют скоординированно и сообща, просто в разных направлениях: если симпатика активизирует работу, то парасимпатика позволяет восстановиться и отдохнуть. Благодаря этому работа внутренних органов всегда в большей или меньшей степени соответствует конкретной ситуации, а организм может подстроиться под любые условия. По сути, обе эти системы составляют основу гомеостаза, сбалансированно регулируя уровни активности человеческого тела.

Большинство внутренних органов имеют и симпатические, и парасимпатические волокна, которые оказывают на них разное влияние. Причём от того, какой из отделов НС превалирует в сложившихся обстоятельствах, зависит состояние органа на текущий момент. На наглядном примере деятельность этих систем можно рассмотреть в таблице ниже.

Орган Парасимпатическое воздействие Симпатическое воздействие
Кровоснабжение головного мозга Сужение сосудов, уменьшение объёма поступающей крови Расширение сосудов, активация кровоснабжения
Периферические артерии и артериолы Сужение просвета, повышение артериального давления и ослабление кровотока Расширение диаметра артериальных сосудов и снижение давления
Частота сердечных сокращений Уменьшение ЧСС Повышение ЧСС
Пищеварительная система Усиление моторики желудочно-кишечного тракта для скорейшего всасывания питательных веществ Замедление перистальтики и, как следствие, метаболизма
Слюнные железы Усиление секреции Ощущение сухости во рту
Надпочечники Подавление эндокринной функции Активация синтеза гормонов
Бронхи Сужение просвета бронхов, более тяжёлое непродуктивное дыхание Расширение бронхов, увеличение объёма вдыхаемого воздуха и продуктивности каждого дыхательного движения
Зрительный анализатор Сужение зрачков Расширение зрачков
Мочевой пузырь Сокращение Расслабление
Потовые железы Снижение потоотделения Усиление активности потовых желёз

Post Scriptum

Неврологические проблемы, связанные с заболеваниями нервной системы человека, являются одними из сложнейших в медицинской практике. Любое повреждение нервных тканей приводит к частичной или полной потере контроля над организмом, наносит огромный ущерб качеству жизни и снижает функциональные возможности человека. Только комплексное и скоординированное действие каждого нейрона всех отделов центральной и периферической НС способно поддерживать организм в оптимальном состоянии, обеспечивать корректную работу каждого органа, адекватно вписываться в окружающие реалии и реагировать на внешние раздражители. Поэтому необходимо внимательно следить за здоровьем собственной нервной системы, а при малейшем подозрении на отклонение срочно принимать соответствующие меры — это один из тех случаев, в которых лучше заняться профилактикой, чем упустить время, пока всё ещё можно исправить без последствий!

www.oum.ru

Нервная система человека — строение, функции, работа

Нервная система человека является стимулятором работы мышечной системы, о которой мы говорили в предыдущей статье. Как мы уже знаем, мышцы нужны для передвижения частей тела в пространстве, и мы даже изучили конкретно, какие мышцы для какой работы предназначены. Но что приводит мышцы в действие? Что и как заставляет их работать? Об этом и пойдет речь в данной статье, из которой вы почерпнете необходимый теоретический минимум для освоения темы, обозначенной в названии статьи.

Введение

Прежде всего, стоит сообщить, что нервная система предназначена для передачи информации и команд нашего тела. Основные функции нервной системы человека – это восприятие изменений внутри тела и окружающего его пространства, интерпретация этих изменений и ответ на них в виде определенной формы (в т. ч. – мышечного сокращения).

Нервная система – множество разных, взаимодействующих между собой нервных структур, обеспечивающая наряду с эндокринной системой координированное регулирование работы большей части систем организма, а также отклик на смену условий внешней и внутренней среды. Данная система объединяет в себе сенсибилизацию, двигательную активность и корректное функционирование таких систем, как эндокринная, иммунная и не только.

Строение нервной системы

Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это – процесс, возникающий от раздражения до появления ответной реакции органа. Распространение нервного импульса в нервном волокне происходит за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна. Нервная система человека обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.

нервная система человека

Строение нервной системы человека: 1- плечевое сплетение; 2- кожно-мышечный нерв; 3- лучевой нерв; 4- срединный нерв; 5- подвздошно-подчревный нерв; 6- бедренно-половой нерв; 7- запирающий нерв; 8- локтевой нерв; 9- общий малоберцовый нерв; 10- глубокий малоберцовый нерв; 11- поверхностный нерв; 12- мозг; 13- мозжечок; 14- спинной мозг; 15- межреберные нервы; 16- подреберный нерв; 17- поясничное сплетение; 18- крестцовое сплетение; 19- бедренный нерв; 20- половой нерв; 21- седалищный нерв; 22- мышечные ветви бедренных нервов; 23- подкожный нерв; 24- большеберцовый нерв

Нервная система функционирует как единое целое с органами чувств и управляется головным мозгом. Самая крупная часть последнего называется большими полушариями (в затылочной области черепа находятся два более мелких полушария мозжечка). Головной мозг соединяется со спинным. Правое и левое большие полушария соединены между собой компактным пучком нервных волокон, называемых мозолистым телом.

Спинной мозг – основной нервный ствол тела – проходит через канал, образованный отверстиями позвонков, и тянется от головного мозга до крестцового отдела позвоночника. С каждой стороны спинного мозга симметрично отходят нервы к различным частям тела. Осязание в общих чертах обеспечивается определенными нервными волокнами, бесчисленные окончания которых находятся в коже.

Классификация нервной системы

Так называемые виды нервной системы человека можно представить следующим образом. Всю целостную систему условно формируют: центральная нервная система – ЦНС, в состав которой входит головной и спинной мозг, и периферическая нервная система – ПНС, в которую входят многочисленные нервы, отходящие от головного и спинного мозга. Кожа, суставы, связки, мышцы, внутренние органы и органы чувств отправляют по нейронам ПНС входные сигналы в ЦНС. В то же время, исходящие сигналы от центральной НС, периферическая НС посылает к мышцам. В качестве наглядного материала, ниже, логически структурированным образом представлена целостная нервная система человека (схема).

строение нервной системы человека

Центральная нервная система – основа нервной системы человека, которая состоит из нейронов и их отростков. Главная и характерная функция ЦНС – реализация различных по степени сложности отражательных реакций, имеющих название рефлексов. Низшие и средние отделы ЦНС – спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок – управляют деятельностью отдельных органов и систем организма, реализуют между ними связь и взаимодействие, обеспечивают целостность организма и его корректное функционирование. Высший отдел ЦНС – кора больших полушарий головного мозга и ближайшие подкорковые образования – по большей части управляет связью и взаимодействием организма как целостной структуры с внешним миром.

Периферическая нервная система – является условно выделяемой частью нервной системы, которая находится за пределами головного и спинного мозга. Включает в себя нервы и сплетения вегетативной нервной системы, соединяя ЦНС с органами тела. В отличие от ЦНС, ПНС не защищена костями и может быть подвержена воздействию механических повреждений. В свою очередь, саму периферическую нервную систему делят на соматическую и вегетативную.

  • Соматическая нервная система – часть нервной системы человека, которая представляет собой комплекс чувствительных и двигательных нервных волокон, отвечающих за возбуждение мышц, и в том числе кожи и суставов. Также она руководит координацией движений тела, и получением и передачей внешних стимулов. Эта система выполняет действия, которыми человек управляет осознанно.
  • Вегетативную нервную систему делят на симпатическую и парасимпатическую. Симпатическая нервная система управляет ответной реакцией на опасности или стресс, и кроме прочего, может вызвать увеличение частоты сердечных сокращений, повышение кровяного давления и возбуждение органов чувств, за счет увеличения уровня адреналина в крови. Парасимпатическая нервная система, а свою очередь, управляет состоянием покоя, и регулирует сокращение зрачков, замедление сердечного ритма, расширение кровеносных сосудов и стимуляцию пищеварительной и мочеполовой системы.

отделы нервной системы человека

Выше вы можете видеть логически структурированную схему, на которой приведены отделы нервной системы человека, в порядке, соответствующем вышеизложенному материалу.

Строение и функции нейронов

нервная клеткаВсе движения и упражнения контролируются нервной системой. Основной структурной и функциональной единицей нервной системы (как центральной, так и периферической) является нейрон. Нейроны – это возбудимые клетки, которые способны генерировать и передавать электрические импульсы (потенциалы действия).

Строение нервной клетки: 1- тело клетки; 2- дендриты; 3- ядро клетки; 4- миелиновая оболочка; 5- аксон; 6- окончание аксона; 7- синаптическое утолщение

Функциональной единицей нейромышечной системы является двигательная единица, которая состоит из двигательного нейрона и иннервируемых им мышечных волокон. Собственно, работа нервной системы человека на примере процесса иннервации мышц происходит следующим образом.

Клеточная мембрана нерва и мышечного волокна является поляризованной, то есть на ней существует разность потенциалов. Внутри клетки содержится высокая концентрация ионов калия (К), а снаружи – ионов натрия (Na). В покое разность потенциалов между внутренней и внешней стороной клеточной мембраны не приводит к возникновению электрического заряда. Эта определенная величина представляет собой потенциал покоя. Из-за изменений во внешнем окружении клетки потенциал на ее мембране постоянно колеблется, и если он возрастает, и клетка достигает своего электрического порога возбуждения, происходит резкое изменение электрического заряда мембраны, и она начинает проводить потенциал действия вдоль аксона к иннервируемой мышце. К слову, в крупных мышечных группах, один двигательный нерв может иннервировать до 2-3 тысяч мышечных волокон.

На схеме ниже вы можете видеть пример того, какой путь проходит нервный импульс от момента возникновения стимула до получения на него ответной реакции в каждой, отдельно взятой системе.

работа нервной системы

Нервы соединяются между собой посредством синапсов, а с мышцами – с помощью нервно-мышечных контактов. Синапс – это место контакта между двумя нервными клетками, а нервно-мышечный контакт – процесс передачи электрического импульса от нерва к мышце.

что такое синаптическая связь

Синаптическая связь: 1- нейронный импульс; 2- принимающий нейрон; 3- ветвь аксона; 4- синаптическая бляшка; 5- синаптическая щель; 6- молекулы нейотрансмиттера; 7- клеточные рецепторы; 8- дендрит принимающего нейрона; 9- синаптические пузырьки

что такое нервно-мышечный контакт

Нервно-мышечный контакт: 1- нейрон; 2- нервное волокно; 3- нервно-мышечный контакт; 4- двигательный нейрон; 5- мышца; 6- миофибриллы

Таким образом, как мы уже говорили – процесс физической активности в целом и мышечного сокращения в частности является полностью подконтрольным нервной системе.

Заключение

Сегодня мы узнали о предназначении, строении и классификации нервной системы человека, а так же о том, как она связана с его двигательной активностью и как она влияет на работу всего организма в целом. Поскольку нервная система вовлечена в регуляцию деятельности всех органов и систем человеческого тела, в том числе, и возможно, в первую очередь – сердечно – сосудистой, то в следующей статье из цикла о системах организма человека, к ее рассмотрению мы и перейдем.

fit-baza.com

Общая схема строения нервной системы. Нервная ткань.

метки: Система, Человек, Клетка, Орган, Функция, Окружать, Нейрон, Высокий

Тема. Физиология нервной системы

План

1. Значение нервной системы.

2. Общая схема строение нервной системы. Нервная ткань.

3. Физиологические свойства нервной ткани.

4.Рефлекс и рефлекторная дуга.

5. Особенности нервных процессов в юношеском возрасте.

Ключевые понятия и термины: низшая и высшая нервная деятельность, нервная система (НС), центральная НС, периферическая НС, вегетативная НС, нейрон, глия, нервная ткань, возбудимость, проводимость, лабильность, раздражимость, раздражитель, биологические реакции, адекватные \ неадекватные раздражители, порог раздражения, подпороговый \ надпороговый раздражитель, адекватный раздражитель, аксон, дендрит, нервные волокна, рефлекторная дуга, рефлекторное кольцо.

Литература

1.Ермолаев Ю.А. Возрастная физиология: Учеб. пособ. для студ. пед. вузов. — М.: Высш. шк., 1985 (с. 22−27).

2. Гигиена / В.Д. Ванханен, Г. А. Суханова. — К.: Вища шк. Головное изд-во, 1986 (с. 8−15).

Терминологический диктант

1. Усложнение строения и функций всех тканей и органов, их взаимоотношений и про­цессов их регуляции (развитие).

2. Наука о функциях или процессах жизнедеятельности, протекающих в организме (физиология).

3.Количественные изменения в организме (рост).

4. Изучение влияние окружающей среды на ор­ганизм человека является задачей (гигиены).

5. Изучение закономерностей становления и развития физиологических функций организма на протяжении его жизненного пути является задачей (возрастной физиологии).

Значение нервной системы

Жизнедеятельность человека должна соответствовать условиям окружающей среды. Для этого нужно воспринимать сигналы извне (свет, звук и др), усваивать, обрабатывать их и правильно реагировать. Для этого все органы и системы должны работать согласованно. Эту функцию выполняет нервная система.

Функции нервной системы могут быть условно поделе­ны на два типа: низшие и высшие.

Низшая нервная дея­тельность представляет собой процессы регуляции всех внутренних органов и физиологических систем организма человека.

7 стр., 3169 слов

Обратная связь в системе восприятия человека человеком

… . Арутюнян, Л. А. Петровская. ОБРАТНАЯ СВЯЗЬ В СИСТЕМЕ ВОСПРИЯТИЯ ЧЕЛОВЕКА ЧЕЛОВЕКОМ   Если подойти к восприятию человека человеком в аспекте динамики, а не как к … одноактному процессу, то важным звеном всей этой системы оказывается …

Высшая нервная деятельность (ВНД) обеспечи­вает человеку адекватный контакт с окружающей средой. Высшие функции лежат в основе психической деятель­ности человека.

Таким образом, благодаря деятельности нервной систе­мы мы связаны с окружающим миром, способны активно воздействовать на окружающую природу и преобразовывать ее. Следовательно, высшая и низшая нервная деятель­ность накладываются одна на другую и должны рассмат­риваться только в тесном и гармоничном единстве.

Общая схема строения нервной системы. Нервная ткань.

Нервная система человека состоит из двух основных отделов: центральной и периферической нервной системы.

К центральной нервной системе (ЦНС) относятся голов­ной и спинной мозг. Она обрабатывает нервные импульсы, поступающие от всего тела.

К периферической НС относятся все нервные во­локна и скопления нервных клеток, расположенные вне ЦНС. Делится на вегетативную и соматическую.

Вегетативная НС осуществляет регу­ляцию деятельности внутренних органов и обмена веществ. Делится на 2 отдела: соматический и вегетативный.

Соматическая НС — регулирует сокращения мышц и обеспечивает чувствительность нашего тела.

— симпатический — готовит органы телак активным действиям в стрессовых ситуациях (усиление частоты сердечных сокращений, глубины вдоха, тормозит активность органов выделения и пищеварения)

— парасимпатический — перестраивает деятельность врутренних органов на состояние покоя

Нервная система состоит из нейронов — нервных клеток. Помимо нейронов в состав нервной системы входят клетки глии. Совокупность нейронов и глиальных клеток составляет нервную ткань. Клетки глии, окружая со всех сторон нейроны, выполняют для них опорные, питательные и электроизолирующие функции.

В процессе постнатального развития человека значи­тельно изменяется соотношение между глиальными и нерв­ными клетками. У новорожденного количество нейронов выше, чем количество глиальных клеток. К 20—30 годам их соотношение становится равным (50:50), а далее сдвига­ется в сторону глиальных клеток.

10 стр., 4973 слов

В каждую клетку моего тела

… читать.     «Возлюбленный проник в каждую клетку моего тела. От меня осталось только имя, все остальное – это … проблем. Исследования взрослых показали, что прикосновение другого тела может уменьшить сердцебиение, снизить артериальное давление и способствовать … сохранения здоровья и благополучия. Ключк пониманию ощущений нашего тела следует искать в простой способности давать и получать …

Например, у 70-летнего человека нейроны головного мозга составляют только 30% от общего количества клеток, входящих в состав нервной ткани. На основании этих и других данных в последние годы высказывается гипоте­за, что глия имеет отношение также к процессам запоми­нания и образованию условных рефлексов.

Нейроны представляют собой клетки, весьма разнооб­разные по форме. Вместе с тем общее строение нейронов не отличается от строения любой другой клетки нашего тела (рис.2).

Здесь также можно выделить клеточную мембрану, ядро, ядрышко, клеточные органоиды. Особен­ностью в строении нейронов является большое количество клеточных отростков и наличие в цитоплазме специфиче­ских образований: тигроидного вещества, или тигроидных глыбок, и нейрофибрилл. В состав тигроидного вещества нейрона входит РНК, содержание которой увеличивается до полового созревания, а затем находится на относитель­но постоянном уровне (если условия существования орга­низма остаются благоприятными).

В случае экстремаль­ных (стрессорных) воздействий содержание РНК в тигроидном веществе может уменьшаться, а сами глыбки пол­ностью распадаются, что приводит к гибели нейрона.

Нейрофибриллы представляют собой длинные белко­вые молекулы, расположенные в теле и отростках нейрона и исчезающие при его длительной работе.

Человеческий мозг вмещает около 100 млрд. нейронов, что составлят лишь 2% веса тела. Нейрон состоит из тела и отростков. Длинные отростки — аксоны— формируют нервные волокна, соединяющиеся в нервы. Длина аксона может достигать 1,5 м. Короткие отростки нейрона — дендриты — осуществляют связь между нейронами.

Тонкие разветвления дендритов по­крыты микроскопическими выростами — шипиками. Су­ществует предположение, что шипики увеличивают пло­щадь контакта нейрона с другими нервными клетками. Число нейронных шипиков значительно увеличивается пос­ле рождения и, как показали эксперименты на животных, связано с процессами обучения. Чем более интенсивно про­водится обучение, тем большее число шипиков образу­ется на дендритах, тем в большей степени изменяется их форма.

Нейроны никогда не прикасаются друг к другу. Они отделены синапсами — промежутками между нейронами шириной менее одной десятитысячной миллиметра. Аксоны формируют синапсы на теле другой нервной клетки или ее отростках. Синапсы состоят из собственно синаптического оконча­ния, представляющего утолщение аксона, синаптической щели и постсинаптической мембраны, являющейся уже частью другого нейрона.

Количество синапсов очень велико, они покрывают тело нейрона, его деидриты и аксон. В целом 80% мембра­ны нейрона покрыто синапсами. На каждом нейроне может быть до 15−20 тысяч синапсов. Число возможных синаптических связей в нашем мозге превышает общее число атомных частиц, составляющих известную нам Вселенную. Карл Сейган утверждает: мозг в состоянии вмещать информацию, которая «заполнила бы приблизительно двадцать миллионов томов — столько, сколько находится в крупнейших библиотеках мира». По образному выражению канадского физиолога Г. Селье, в коре головного мозга заключено столько мыслительной энергии, сколько физической энергии содержится в атомном ядре.

Проблемный вопрос: Ученые полагают, что из огромного числа нейронов головного мозга активны только 4%. Зачем же человеку остальные 96%? Ответ: При усиленной умственной работе активизируются ранее незадействованные клетки коры.

Синаптические щели перекрываются медиаторами — химическими передатчиками нервных импульсов. Сегодня известно более 30 разных медиаторов.

Когда нейрон возбуждается, нервный импульс электрическим путем протекает от дендрита к аксону. Достигнув его окончания, импульс заставляет синаптические пузырьки с молекулами медиатора выбрасывать через синапс свое содержимое. Медиатор воздействует на нужный нейрон, либо рождая электрический импульс, либо тормозя электрическую деятельность. Когда нейроны регулярно возбуждаются и выбрасывают через синапс медиаторы, они ближе притягиваются друг к другу и связь между ними укрепляется, благодаря чему повышается способность учиться. Следовательно, мозг, как и мышца, укрепляется применением и слабеет от бездействия.

Таким образом, нервный сигнал передается по нервам электрохимическим путем со скоростью 4 м/с, поэтому мы реагируем на различные раздражители почти мгновенно.

Один нейробиолог изучай один участок мозга над носом с целью узнать, как мы узнаем запахи. «Даже эта простая задача, которая представляется пустячной в сравнении с доказательством геометрической теоремы или эстетической оценкой струнного квартета Бетховена, требует участия примерно 6 миллионов нейронов, каждый из которых получает от своих соседей, возможно, до 10 000 сигналов».

Нервными волокнами называются покрытые оболочка­ми отростки нервных клеток. Тела нейронов и большая часть их дендритов сосредоточены в спинном и головном мозге. Незначительная часть дендритов и аксоны, длина которых у человека может достигать 1 —1,5 м, выходят да­леко за пределы ЦНС. Сплетаясь друг с другом, они обра­зуют нервы. Нервы видны в виде белых нитей даже не­вооруженным глазом. Они, как провода, связывают все участки нашего тела с центральными отделами нервной системы.

Основная функция нервных волокон и нервов — прове­дение нервных импульсов. Различают чувствительные нер­вы (афферентные), проводящие нервные импульсы к ЦНС (центростремительные), двигательные нервы (эфферент­ные), проводящие нервные импульсы от ЦНС к перифери­ческим органам (центробежные), и смешанные нервы, состоящие из чувствительных и двигательных волокон.

Некоторые нервные волокна имеют оболочку, состоя­щую из жироподобного вещества — миелина, выполняю­щего трофические, защитные и электроизолирующие функ­ции. Нервные волокна, покрытые миелином, называют мякотными, а не имеющие его — безмякотными. Скорость проведения возбуждения в последних значительно ниже и составляет всего 1 — 30 м/с, в то время как в мякотных во­локнах — 120 м/с.

На первых этапах онтогенеза миелиновая оболочка от­сутствует и ее развитие идет в основном в первые два-три года.

Формирование оболочек в значительной степени зави­сит от условий жизни ребенка. В неблагоприятных усло­виях процесс миелинизации может замедляться на не­сколько лет, что затрудняет управляющую и регулирую­щую деятельность нервной системы.

Физиологические свойства нервной ткани

Одно из самых общих свойств всего жи­вого — раздражимость.

Раздражитель — изменения в окружающей среде или организме (физические — электричество, физико-химические — изменение состава крови; химические — лекарственные препараты, ферменты).

Раздражение — процесс действия раздражителя.

Биологические реакции — ответные изменения в деятельности кле­ток и целого организма.

Виды физиологических раздражителей:

— адекватные — к вос­приятию которых клетки и ткани организма приспособи­лись в процессе своего исторического развития (для рецепторов кожи — давление, для рецепторов глаза — свет, для температурных — изменения температуры).

Наиболее общим, адекватным и естественным раздражителем для всех клеток нашего тела является нервный импульс.

— неадекватные — к восприятию которых клетки и ткани специально не приспособлены. Например, ощуще­ния светового блика возникают в глазах не только при воздействии света, а также при механических воздейст­виях, и в частности при ударе.

Возбудимость -способность быстро реагировать на раздражение. Количест­венной мерой возбудимости является порог раздраже­ния — минимальная величина раздражителя, способная вызвать ответную реакцию ткани. В этой связи раздражи­тель меньшей силы называют подпороговым, а большей — надпороговым. Последние в сравнении с пороговыми, как правило, вызывают более значительные ответные измене­ния в жизнедеятельности ткани или организма.

Возбудимость проявляется в процессах возбуждения, которые представляют собой изменение процессов обмена веществ в клетках нервной ткани и выделение различных видов энергии (тепловой, электирческой, лучистой).

Таким образом, процессы возбуждения способствуют протеканию функции или деятельности организма. Существуют также процессы торможения, которые препятствуют из протеканию.

Виды торможения:

-первичное- протекает без предшествующего возбуждения в тормозных нейронах и синапсах (при опережающем торможении нервные импульсы возбуждают тормозные клетки, в результате чего при возбуждении одних групп мышц происходит параллельное торможение мыщц-антагонистов.

-вторичное — развивается в результате функциональной активности возбудимых нейронов.

Функции торможения:

· обеспечивает координацию двигательного акта

· освобождает ЦНС от переработки несущественной информации

· защищает нервные центры от утомления и истощения

Проводимость— способность жи­вой ткани проводить возбуждение. Проводимость нервной ткани связана с распространением по ней процессов воз­буждения. Возникнув в одной клетке, электрический (нерв­ный) импульс легко переходит на соседние клетки и может передаваться в любой участок нервной системы.

Проводимость нервной ткани связана с тем, что возник­ший в месте возбуждения потенциал действия в свою оче­редь вызывает изменения ионных концентраций в соседнем участке. Возникнув на новом участке, потенциал действия вновь вызывает изменение концентрации ионов в сосед­нем участке и, соответственно, новый потенциал дейст­вия и т. д. Таким способом волна возбуждения распрост­раняется вдоль всей ткани или отдельной нервной клетки.

Лабильность.Исследование процессов возбужде­ния в нервной ткани показало, что уровень ее возбудимости является величиной непостоянной. В частности, если нерв­ная ткань подвергается повторным раздражениям в период развития потенциала действия, то никакой ответной реак­ции не наблюдается. Эту фазу полного исчезновения воз­будимости называют фазой абсолютной рефрактерности. Она совпадает по времени с периодом возникновения и протекания потенциала действия и составляет не более 0,4 мс (для нервной ткани теплокровных животных).

За­тем возбудимость ткани постепенно достигает своего ис­ходного уровня. Эту фазу называют фазой относительной рефрактерности. По длительности она обычно в несколько раз превышает фазу абсолютной рефрактерности. Дейст­вие раздражителей в этот период способно вызывать сла­бую реакцию. Наконец, эта фаза сменяется фазой повы­шенной возбудимости ткани (фаза супернормальности) и действие раздражителей в этот момент сопровождается более выраженной реакцией.

Лабильность — свойство, ха­рактеризующее способность возбудимой ткани воспроиз­водить максимальное количество потенциалов действия в единицу времени. Оказалось, что нервная ткань обладает наибольшей лабильностью, у мышечной она значительно ниже, самая низкая лабильность у синапсов.

Лабильность ткани в значительной степени зависит от функционального состояния этой ткани. Патологические процессы и утомление приводят к снижению лабильности нервной ткани, а систематические специальные трениров­ки — к ее повышению. В частности, последний эффект на­блюдается в нервной и мышечной системах спортсменов под действием тренировок в тех видах спорта, которые требуют развития быстрых ответных действий, например в спортивных играх и единоборствах.

Основные физиологические свойства нервной ткани, ее проводимость, возбудимость и лабильность характери­зуют функциональное состояние нервной системы челове­ка, определяют его психические процессы. Нарушение про­водимости и возбудимости нервной ткани, например при общем наркозе, прекращает все психические процессы че­ловека и приводит к полной потере сознания.

Рефлекс и рефлекторная дуга.

Рефлекс — ответная реакция организма на раздражение, происходящая при участии ЦНС.

Рефлекторная дуга — путь, по которому проходит возбуждение при рефлексе. Простейшая рефлекторная дуга состоит из следующих частей:

— рецептор — окончание чувствительного нерва, воспринимающее раздражение из окружающей среды или внутренней среды организма;

— афферентное нервное волокно — отросток чувствительного нейрона, передающего возбуждение в ЦНС;

— ЦНС — головной и спинной мозг, которые осуществляют анализ полученной информации и посылает ответную реакцию;

— эфферентное нервное волокно — отросток двигательного нейрона, посылающий нервный импульс от ЦНС к исполнительным органам;

— эффектор — исполнительный орган.

В большинстве случаев в состав рефлекторных дуг входят несколько нейронов, и связи между ними обеспечивают множество синапсов. Поскольку скорость передачи сигнала с синапах химический способом в тысячу раз меньше скорости электрического сигнала в нейронах, то чем больше синапсов на пути движения нервных импульсов, тем больше времени от начала раздражения до начала ответной реакции, т. е.время реакции.

После прекращения действия раздражителя активность нейронов не прекращается. Явление последействия связано с механизмами памяти. Непродолжительное последействие до 1ч. — с кратковременной памятью, а более длительные следы, имеющие значение в обучении, — с долговременной.

Особенности нервных процессов у юношей

Юношеский возраст (14−20 лет) является этапом завершающего развития функций мозга. Мозг отличается высокой пластичностью, его резервные возможности очень велики и их необходимо использовать. Особенности нервной системы в юношеском возрасте следующие:

— пластичность связей нервных центров;

— высокая избирательность участия нервных центров;

— высокий уровень произвольного регулирования в соответствии с внешними инструкциями и внутренними потребностями;

— продолжается структурное созревание коры больших полушарий: усложняется организация ее нервных элементов, расширяются метаболические возможности нейронов.

— совершенствуются механизмы функциональной организации мозга.

— специализация структур мозга в восприятии обеспечивает более быстрое и точное реагирование на воздействия внешней среды.

— формируются межполушарные отношения при умственной деятельности: правое активизируется при зрительно-пространственной деятельности, левое — при речевой и абстрактной.

— отрабатываются нейрофизиологические механизмы, определяющие индивидуальную стратегию познавательной деятельности.

Расширению возможностей мозга в учебной деятельности, улучшению умственной работоспособности могут способствовать целенаправленные педагогические воздействия, такие как:

— развитие способности к большей концентрации внимания;

— развитие умения быстро и четко выделять наиболее значимую информацию;

— умение организовывать мыслительную деятельность.

К 18−20 годам координация рефлекторных процессов достигает своего совершенства.

Закрепление материала

Решите кроссворд и прочитайте слово в выделенных клеточках. Дайте ему определение.

1. Нервное окончание.

2. Часть нервной клетки.

3. Исполнительный орган.

4. Нервный узел.

5. Нервная клетка.

6. Ответвление нейрона, передающее сигнал.

7. Вид нервной деятельности.

Вопросы самоконтроля

1. Охарактеризуйте изменения строения нервной системы человека, связанные с интеллектуальным развитием.

2. Какие из механизмов нервной системы поддаются тренировке?

3. Перечислите адекватные раздражители для основных анализаторных систем человека.

4. Поясните преимущества процесса миелинизации нервных волокон.

Если вы автор этого текста и считаете, что нарушаются ваши авторские права или не желаете чтобы текст публиковался на сайте ForPsy.ru, отправьте ссылку на статью и запрос на удаление:

Отправить запрос

forpsy.ru

Значение, строение и функционирование нервной системы

Тема: Нервная и эндокринная система

Урок: Значение, строение и функционирование нервной системы

Нервная система – одна из главных систем, делающих наш организм не просто суммой миллиардов клеток, а уникальным единым организмом. 

Нервная система регулирует и координирует работу всех систем и органов, поддерживает постоянство внутренней среды организма, и позволяет человеку успешно выживать в  непростых, постоянно изменяющихся условиях.

Конечно, нервная система справляется с этим не в одиночку. Важнейшими системами, обеспечивающими целостность нашего организма, являются также эндокринная и иммунная. Тем не менее, говоря о регуляторных системах человеческого организма, в первую очередь имеют в виду нервную систему. Дело в том, что она первой успевает ответить на изменение ситуации, а ее реакция является самой быстрой и адресной. Для нервной системы характерна точная направленность нервных импульсов, большая скорость проведения информации. Именно работа этой системы служит основой для психической деятельности человека, его мышления, речи, сложных форм поведения.

Основа нервной системы – нервная ткань. Нервная ткань состоит из нервных клеток – нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц. Вспомогательные клетки располагаются между нейронами и составляют межклеточное вещество нервной ткани. Выполняют опорную, защитную и питательную функции.

 

Рис. 1.

Нейрон – основная структурно-функциональная единица нервной ткани. Основные функции нейронов – генерация, проведение и передача нервного импульса – электрического сигнала, передающегося по нервным клеткам.

Рис. 2.

Нейрон состоит из тела и отростков. Отростки бывают короткими и длинными. Длинные отростки нервных клеток пронизывают организм и обеспечивают связь головного и спинного мозга с любым участком тела. У большинства нейронов длинный отросток имеет оболочку из особого жироподобного вещества миелина. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина.  По наличию или отсутствию оболочки все отростки делятся на миелинизированные и немиелинизированные.

Рис. 3.

Миелиновая оболочка имеет белый цвет, что позволило разделить вещество нервной системы на белое и серое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна – белое вещество.

Функциональное различие отростков нейронов связано с проведением нервного импульса.

Отросток, по которому импульс идет от тела нейрона, называется аксоном.  У большинства нервных клеток аксон – это длинный отросток.

Отросток нейрона, по которому импульс идет к телу клетки, называется дендрит. Нейрон может иметь один или несколько дендритов. Дендриты, отходя от тела клетки, постепенно ветвятся под острым углом.

Рис. 4.

Передача сигнала от клетки к клетки осуществляется в особых образованиях – синапсах. Такое название им дал в 1897 г. Чарлз Шеррингтон.  В них конечная веточка аксона утолщена и содержит пузырьки с раздражающим веществом – медиатором. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. В зависимости от ее состава клетка, регулируемая нейроном, может включиться в работу, то есть возбудиться, или выйти из работы (затормозиться).

Рис. 5. (Источник)

Нейроны различаются по своим функциям и подразделяются на чувствительные, вставочные и двигательные.

Чувствительные нейроны – это нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма.

Рис. 6.

Двигательные (исполнительные) нейроны – нейроны, иннервирующие мышечные волокна и железы.

Рис. 7.

Вставочные нейроны обеспечивают связь между чувствительными и двигательными нейронами.

Между чувствительным и двигательным нейроном может быть очень большое количество вставочных нейронов. Они собирают, анализируют информацию, полученную от чувствительных нейронов, и принимают решение о том, каким образом отреагировать на изменившиеся условия.

Нервную систему (по месту расположения) подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг, к периферической – нервы, нервные узлы и нервные окончания.

Рис. 8.

Нервы – пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга.

Если информация по нерву идет от рецепторов в головной или спинной мозг, то такие нервы называют чувствительными, центростремительными или афферентными.  Эти нервы состоят из дендритов чувствительных нейронов.

Если информация по нерву идет из центральной нервной системы к исполнительным органам (мышцам или железам), то нерв называется двигательным или эфферентным. Двигательные нервы образованы аксонами двигательных нейронов.

В смешанных нервах проходят как чувствительные, так и двигательные волокна.

Нервные узлы – это скопления тел нейронов вне ЦНС.

Нервные окончания – разветвления отростков нейронов, служат для приема или передачи сигналов.

По функциям нервная система подразделяется на соматическую и вегетативную (автономную).

Рис. 9.

Соматическая нервная система (от греческого «сома» – «тело») регулирует работу скелетных мышц. Благодаря ей организм через органы чувств поддерживает связь с внешней средой. С ее помощью мы можем произвольно (по собственному желанию) управлять деятельностью скелетной мускулатуры. 

Деятельностью внутренних органов,  реакциями обмена веществ, поддержанием постоянства внутренней среды организма человека  управляет автономная или вегетативная нервная система. Ее название происходит от греческого слова «автономия» – самоуправление. Работа этой системы не подчиняется воле человека. Нельзя, например, по желанию ускорить процесс пищеварения или сузить кровеносные сосуды.

Автономная система представлена двумя отделами – симпатическим и парасимпатическим. Симпатический отдел (система сложных ситуаций)  включается во время интенсивной работы, требующей затраты энергии (что-то услышал неожиданное – расширяются зрачки, возрастает частота сокращений сердца, замедляется деятельность пищеварительной системы, учащается дыхание). Парасимпатический отдел можно назвать системой отбоя. Она возвращает организм в состояние покоя, создает условия для отдыха и восстановления организма.

Основной принцип работы нервной системы – рефлекторный. Любая ответная реакция организма на раздражитель, осуществляемая и контролируемая нервной системой, называется рефлексом. Основу рефлекторной реакции составляет рефлекторная дуга.  В состав рефлекторной дуги входит рецептор, воспринимающий раздражение. По аксону чувствительного нейрона возбуждение попадает в центральную нервную систему и может распространиться непосредственно на двигательный нейрон или сначала на вставочные нейроны, а уже через них на эфферентный нейрон. По аксону эфферентного нейрона возбуждение достигает исполнительного органа, чаще всего мышцы. В результате возбуждения деятельность этого органа изменяется, например, мышца сокращается.

 

Рис. 10.

Рефлексы подразделяются на соматические, заканчивающиеся сокращением скелетных мышц, и вегетативные, в результате которых меняется работа внутренних органов. Примером наиболее простого соматического рефлекса может служить дуга коленного рефлекса, состоящая всего из двух нейронов – чувствительного и двигательного.

 

Список рекомендованной литературы

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа

2. Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В. Биология 8   М.:Дрофа.

3. Драгомилов А.Г., Маш Р.Д. Биология 8 М.: ВЕНТАНА-ГРАФ

 

Рекомендованные ссылки на ресурсы интернет

1. Bibliotekar.ru (Источник).

2. Psyera.ru (Источник).

3. Nnre.ru (Источник).

 

Рекомендованное домашнее задание

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.: Дрофа – с. 39, задания и вопрос 6,7,8,9.

2. Какие выделяют отделы нервной системы по месту расположения?

3. Опишите строение нейрона.

4. Подготовьте реферат о заболеваниях нервной системы.

interneturok.ru

Общее представление о строении ЦНС

Общая схема строения ЦНС

В нервной системе выделяют центральную и периферическую нервную систему. Периферическая нервная системапредставлена корешками спинного мозга, нервными сплетениями, нервными узлами (ганглиями), нервами, периферическими нервными окончаниями (рис. 2.1). В свою очередь, нервные окончания могут быть:

а) эфферентными (двигательными), которые передают возбуждение от нервов к мышцам и железам;

б) афферентными (чувствительными), передающими информацию от рецепторов к центральной нервной системе.

Рис. 2.1. Составные части периферической нервной системы

Центральная нервная системачеловека состоит из головного и спинного мозга.

Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками. Головной мозг является расширением спинного мозга. У далеких предков хордовых животных (например, у ланцетника) нервная трубка одинакового диаметра на всем протяжении, и головной мозг практически отсутствует. У рыб головной мозг уже хорошо развит, и с каждой ступенью эволюции он увеличивается. Наивысшего развития головной мозг достигает у человека, который имеет самый большой показатель цефализации (отношения массы мозга к массе тела) среди всех других живых существ.

Макроскопически (невооруженным глазом) на срезе мозга можно выделить белое и серое вещество. Белое вещество представляет собой пучки нервных волокон и формирует проводящие пути. Так как большая часть длинных нервных отростков покрыта слоем белого жироподобного вещества (миелина), то их скопления имеют белый цвет. Серое вещество — это тела нейронов, формирующих нервные центры. Серое вещество в центральной нервной системе образует два типа скоплений (структур): ядерные структуры (ядра спинного мозга, ствола мозга и больших полушарий), в которых клетки лежат тесными группами, и экранные структуры (кора больших полушарий и мозжечка), в которых клетки лежат слоями.

Головной мозг залегает в полости черепа. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г. Между массой мозга и интеллектуальными способностями человека нет однозначной связи. Так, мозг И. С. Тургенева достигал массы почти 2 кг, а у французского писателя Анатоля Франса весил чуть больше одного килограмма. Тем не менее, их вклад в мировую литературу равновелик.

Анатомически в головном мозге можно различить полушария, ствол и мозжечок (малый мозг). Ствол включает в себя продолговатый мозг, мост, средний мозг и промежуточный мозг (рис. 2.2).

Рис. 2.2. Анатомические отделы головного мозга

Существует и другая классификация отделов головного мозга, которая ориентируется на особенности развития того или иного отдела (в процессе онтогенеза). Если отделы головного мозга выделять, опираясь на процессы эмбрионального развития (в соответствии со стадией трех мозговых пузырей), то головной мозг можно разделить на передний, средний и задний (ромбовидный) мозг. В соответствии с таким подходом к переднему мозгу относят большие полушария и промежуточный мозг, к среднему — средний мозг, к ромбовидному (развивающемуся из заднего мозгового пузыря) — продолговатый мозг, задний мозг и перешеек ромбовидного мозга (рис. 2.3).

Рис. 2.3. Онтогенетическая классификация отделов головного мозга

 

Левое и правое полушария конечного мозга разделены продольной щелью, дном которой является мозолистое тело. С мозжечком их разграничивает поперечная щель. Вся поверхность полушарий покрыта бороздами и извилинами, наиболее крупная из них — боковая, или сильвиева, она отделяет лобную долю полушарий от височной.

На сагиттальном разрезе мозга видны медиальная поверхность полушарий большого мозга, структуры ствола мозга и мозжечка (рис. 2.4). Кора полушарий отделена бороздой от мозолистого тела. Мозолистое тело является большой спайкой мозга, имеет волокнистую структуру. Под мозолистым телом располагается тонкая белая полоска — свод.

Рис. 2.4. Сагиттальный разрез головного мозга человека:

1 — полушарие переднего мозга; 2 — мозжечок; 3 — продолговатый мозг;

4 — мост; 5 —средний мозг; 6 — промежуточный мозг; 7 — мозолистое тело

От головного мозга отходят 12 пар черепно-мозговых нервов, иннервирующих преимущественно голову, ряд мышц шеи и затылка, а также осуществляющих парасимпатическую иннервацию внутренних органов. От спинного мозга отходит 31 пара спинномозговых нервов, иннервирующих туловище и внутренние органы.

Полости мозга и ликвор

В процессе эмбрионального развития полости мозговых пузырей преобразуются в желудочки мозга. В левом и правом полушариях соответственно расположены I и II желудочки, в промежуточном мозге — III желудочек, в ромбовидном мозге — IV желудочек. Третий и четвертый желудочки соединены сильвиевым водопроводом, проходящем в среднем мозге. Полости мозга заполнены спинномозговой (цереброспинальной) жидкостью — ликвором. Они сообщаются между собой, а также со спинномозговым каналом и подпаутинным пространством (пространством под одной из оболочек мозга) (рис. 2.5).

Рис. 2.5. Схема полостей мозга

Цереброспинальная жидкость продуцируется сосудистыми сплетениями желудочков мозга, имеющими железистое строение, а всасывается венами мягкой оболочки мозга. Процессы образования и всасывания ликвора протекают непрерывно, обеспечивая 4-5-кратный обмен цереброспинальной жидкости в течение одних суток. В полости черепа присутствует относительная недостаточность всасывания ликвора (т. е. ликвора всасывается меньше, чем продуцируется), а во внутрипозвоночном канале преобладает относительная недостаточность выработки ликвора (ликвора продуцируется меньше, чем всасывается). При нарушении ликвородинамики между головным и спинным мозгом в полости черепа развивается чрезмерное накопление ликвора, а в субарахноидальном пространстве спинного мозга жидкость быстро всасывается и концентрируется.

Циркуляция ликвора зависит от пульсации сосудов мозга, дыхания, движений головы, интенсивности образования и всасывания самого ликвора.

Из боковых желудочков мозга, где, повторимся, доминирует образование ликвора над его всасыванием, цереброспинальная жидкость попадает в III желудочек мозга и далее, по водопроводу мозга, — в IV желудочек, откуда через отверстия Лушки ликвор попадает в большую цистерну и наружное субарахноидальное пространство головного мозга, центральный канал и субарахноидальное пространство спинного мозга и в конечную цистерну спинного мозга.




infopedia.su

0 comments on “Схема строения нервной системы – Строение нервной системы человека, ее функциональное деление (Таблицы, Схемы)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *