Схема термопары – Термопара — Википедия

Термопара — Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые электрически навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя. Обычно вторичный преобразователь измеряет разность их ЭДС, таким образом, с помощью двух термопар можно измерить разность температур между их рабочими спаями по результатам измерения напряжения. Метод не является точным, если во вторичном преобразователе не предусмотрена линеаризация статической характеристики термопар, так как все термопары в той или иной степени имеют нелинейную статическую характеристику преобразования

[1].

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки разнородных проводников находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой T1{\displaystyle T_{1}}, мы получим напряжение между противоположными контактами, находящимися при другой температуре T2{\displaystyle T_{2}}, которое будет пропорционально разности температур: T1−T2.{\displaystyle T_{1}-T_{2}.}

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.

Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик[2]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;

— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[3]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения[править | править код]

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[4]. Упоминания об этом их применении относятся к началу 1830-х годов[5]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу[6].

Преимущества термопар[править | править код]

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки[править | править код]

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ[7].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Таблица ниже описывает свойства нескольких различных типов термопар[8]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью ±0,0025×T имела бы точность ±2,5 °C при 1000 °C.

Тип

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C)Класс точности 2 (°C)IEC (МЭК)

Цветовая маркировка

KХромель

Cr—Ni

Алюмель

Ni—Al

40…410 до +1100−180 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
JЖелезо

Fe

Константан

Cu—Ni

55.20 до +700−180 до +800±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
NНихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100−270 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
RПлатинородий

Pt—Rh (13 % Rh)

Платина

Pt

0 до +1600−50 до +1700±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
SПлатинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600−50 до +1750±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
BПлатинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +17000 до +1820±0,0025×T от 600 °C до 1700 °CОтсутствует
TМедь

Cu

Константан

Cu—Ni

−185 до +300−250 до +400±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
EХромель

Cr—Ni

Константан

Cu—Ni

680 до +800−40 до +900±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый
  • Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

ru.wikipedia.org

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю – «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С – керамика с повышенным содержанием Al2O3, свыше 1400°С – керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

odinelectric.ru

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

www.kipiavp.ru

Принцип работы термопары: описание, устройство, схема

Принцип действия и устройство термопары предельно просты. Это обусловило популярность данного прибора и широкое применение во всех отраслях науки и техники. Термопара предназначается для измерения температур в широком диапазоне – от -270 до 2500 градусов по Цельсию. Устройство вот уже не одно десятилетие является незаменимым помощником инженеров и ученых. Работает надежно и безотказно, а показания температуры всегда правдивые. Более совершенного и точного прибора просто не существует. Все современные устройства функционируют по принципу термопары. Работают в тяжелых условиях.

Назначение термопары

Данное устройство преобразовывает тепловую энергию в электрический ток и позволяет измерять температуру. В отличие от традиционных ртутных градусников, способно работать в условиях как экстремально низких, так и экстремально высоких температур. Данная особенность обусловила широкое применение термопары в самых разнообразных установках: промышленные металлургические печи, газовые котлы, вакуумные камеры для химико-термической обработки, духовой шкаф бытовой газовой плиты. Принцип работы термопары всегда остается неизменным и не зависит от того, в каком устройстве она монтируется.

От надежной и бесперебойной работы термопары зависит работа системы аварийного отключения приборов в случае превышения допустимых лимитов температур. Поэтому данное устройство должно быть надежным и давать точные показания, чтобы не подвергать риску жизнь людей.

Принцип действия термопары

Термопара имеет три основных элемента. Это два проводника электричества из разных материалов, а также защитная трубка. Два конца проводников (их еще называют термоэлектродами) спаяны, а два других подключаются к потенциометру (прибор для измерения температуры).

Если говорить простым языком, принцип работы термопары заключается в том, что спай термоэлектродов помещается в среду, температуру которой необходимо измерить. В соответствии с правилом Зеебека, возникает разность потенциалов на проводниках (иначе – термоэлектричество). Чем больше температура среды – тем более значимой является разница потенциалов. Соответственно, стрелка прибора отклоняется больше.

В современных комплексах измерения на смену механическому устройству пришли цифровые индикаторы температуры. Однако далеко не всегда новый прибор превосходит по своим характеристикам старые аппараты еще советских времен. В технических вузах, да и в научно-исследовательских учреждениях, и по сей день пользуются потенциометрами 20-30-летней давности. И они демонстрируют поразительную точность и стабильность измерений.

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Материалы проводников

Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.

Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов. Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными. Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.

В настоящее время наиболее распространены термопары следующих видов: E, J, K.

Термопара типа E

В качестве материалов для проводников используются константан и хромель. Изделия данного типа хорошо зарекомендовали себя по части надежности и точности показаний. Свидетельств тому – многочисленные положительные отзывы специалистов. Однако данный состав демонстрирует точность измерений лишь в положительном диапазоне температур до 600 градусов по Цельсию включительно.

Термопара типа J

По принципу работы термопара не отличается от предыдущей. Однако хромель уступил место технически чистому железу, что позволило существенно расширить диапазон рабочей температуры с сохранением стабильности показаний. Он составляет от -100 до 1200 градусов по Цельсию.

Термопара типа K

Это, пожалуй, самый распространенный и применяемый повсюду тип термопары. Пара хромель — алюминий отлично работает при температурах от -200 до 1350 градусов по Цельсию. Данный тип термопары отличается большой чувствительностью и фиксирует даже незначительный скачок температуры. Благодаря такому набору параметров, термопара применяется и на производстве, и для научных исследований. Но есть у нее и существенный недостаток – влияние состава рабочей атмосферы. Так, если данный вид термопары будет работать в среде CO2, то термопара будет давать некорректные показания. Данная особенность ограничивает применение устройств такого типа. Схема и принцип работы термопары остаются неизменными. Разница лишь в химическом составе электродов.

Проверка работы термопары

В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.

Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.

Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.

Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.

В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.

Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.

Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

www.nastroy.net

описание, устройство, схема :: SYL.ru

Принцип действия и устройство термопары предельно просты. Это обусловило популярность данного прибора и широкое применение во всех отраслях науки и техники. Термопара предназначается для измерения температур в широком диапазоне – от -270 до 2500 градусов по Цельсию. Устройство вот уже не одно десятилетие является незаменимым помощником инженеров и ученых. Работает надежно и безотказно, а показания температуры всегда правдивые. Более совершенного и точного прибора просто не существует. Все современные устройства функционируют по принципу термопары. Работают в тяжелых условиях.

Назначение термопары

Данное устройство преобразовывает тепловую энергию в электрический ток и позволяет измерять температуру. В отличие от традиционных ртутных градусников, способно работать в условиях как экстремально низких, так и экстремально высоких температур. Данная особенность обусловила широкое применение термопары в самых разнообразных установках: промышленные металлургические печи, газовые котлы, вакуумные камеры для химико-термической обработки, духовой шкаф бытовой газовой плиты. Принцип работы термопары всегда остается неизменным и не зависит от того, в каком устройстве она монтируется.

От надежной и бесперебойной работы термопары зависит работа системы аварийного отключения приборов в случае превышения допустимых лимитов температур. Поэтому данное устройство должно быть надежным и давать точные показания, чтобы не подвергать риску жизнь людей.

Принцип действия термопары

Термопара имеет три основных элемента. Это два проводника электричества из разных материалов, а также защитная трубка. Два конца проводников (их еще называют термоэлектродами) спаяны, а два других подключаются к потенциометру (прибор для измерения температуры).

Если говорить простым языком, принцип работы термопары заключается в том, что спай термоэлектродов помещается в среду, температуру которой необходимо измерить. В соответствии с правилом Зеебека, возникает разность потенциалов на проводниках (иначе – термоэлектричество). Чем больше температура среды – тем более значимой является разница потенциалов. Соответственно, стрелка прибора отклоняется больше.

В современных комплексах измерения на смену механическому устройству пришли цифровые индикаторы температуры. Однако далеко не всегда новый прибор превосходит по своим характеристикам старые аппараты еще советских времен. В технических вузах, да и в научно-исследовательских учреждениях, и по сей день пользуются потенциометрами 20-30-летней давности. И они демонстрируют поразительную точность и стабильность измерений.

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Материалы проводников

Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.

Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов. Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными. Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.

В настоящее время наиболее распространены термопары следующих видов: E, J, K.

Термопара типа E

В качестве материалов для проводников используются константан и хромель. Изделия данного типа хорошо зарекомендовали себя по части надежности и точности показаний. Свидетельств тому – многочисленные положительные отзывы специалистов. Однако данный состав демонстрирует точность измерений лишь в положительном диапазоне температур до 600 градусов по Цельсию включительно.

Термопара типа J

По принципу работы термопара не отличается от предыдущей. Однако хромель уступил место технически чистому железу, что позволило существенно расширить диапазон рабочей температуры с сохранением стабильности показаний. Он составляет от -100 до 1200 градусов по Цельсию.

Термопара типа K

Это, пожалуй, самый распространенный и применяемый повсюду тип термопары. Пара хромель — алюминий отлично работает при температурах от -200 до 1350 градусов по Цельсию. Данный тип термопары отличается большой чувствительностью и фиксирует даже незначительный скачок температуры. Благодаря такому набору параметров, термопара применяется и на производстве, и для научных исследований. Но есть у нее и существенный недостаток – влияние состава рабочей атмосферы. Так, если данный вид термопары будет работать в среде CO2, то термопара будет давать некорректные показания. Данная особенность ограничивает применение устройств такого типа. Схема и принцип работы термопары остаются неизменными. Разница лишь в химическом составе электродов.

Проверка работы термопары

В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.

Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.

Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.

Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.

В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.

Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.

Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

www.syl.ru

конструкция и принцип работы датчика, виды устройств для измерения температуры

Термоэлектрический преобразователь, или термопара, представляет собой устройство, используемое в промышленности и медицине при проведении научных экспериментов, а также в системах автоматики. С помощью этого прибора проводятся замеры температуры. Для определения разности температурных показателей зон применяются дифференциальные устройства, которые представляют собой две термопары, соединенные навстречу друг другу.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Электроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Если соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Термопара ПП расшифровывается как платинородий-платиновый, где первым идет обозначение положительного электрода, а вторым — отрицательного. Величина электродвижущей силы составляет небольшую величину, которая измеряется милливольтами при разнице температуры в 100 К (173,15 °C).

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Тип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Компенсационные провода

В состав термопар входят компенсационные провода, которые выглядят как удлинители для подсоединения устройств к измерительному прибору. Если устроить свободные концы в головке термоэлектрического преобразователя, то практически его подсоединение выполнить нельзя, так как прибор работает при очень высоких температурах.

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Источники погрешностей измерений

На выполнение правильного процесса измерения влияют внешние источники, техническое состояние средств измерения и другие условия. На точность измерения с использованием термоэлектрического преобразователя влияет изменение электродвижущей силы.

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений. Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи. Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

rusenergetics.ru

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500 градусов. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400 градусов.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0 градусов.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500 градусов появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5 градусов.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500 градусов. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250 градусов.
  • Рекомендуемая температура эксплуатации не превышает 1200 градусов, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350 градусов.
  • Допускается кратковременное использование при 1600 градусах.
  • Нецелесообразно использовать при температуре менее 400 градусов, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000 градусов термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900 градусов, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500 градусов.
  • Нецелесообразно использование при температуре менее 600 градусов, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750 градусах.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.
Преимущества
  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.
Недостатки
  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации
Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:
  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

electrosam.ru

0 comments on “Схема термопары – Термопара — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *