Схема управления кулером от температуры – Система автоматического управления вентилятором. — Радио-как хобби

Система автоматического управления вентилятором. — Радио-как хобби

Система автоматического управления вентилятором своими руками.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить  вентилятор на полные обороты. Но это не самый лучший выход-шум  вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления  вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –«делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

 

Система автоматического управления  вентилятором №1.

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и  VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе  микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3  можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры  n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

 

Система автоматического управления  вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1  может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания  схемы.

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве  VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь   цепь  R5, R6,VD2     позволяет  установить    минимальные  обороты    вентилятора  при   нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет  необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную  работу.

www.myhomehobby.net

Простая схема управление вентилятором или кулером охлаждения

В данной схеме управление вентилятором или кулером системы охлаждения происходит по сигналу термистора в течении заданного периода времени. Схема простая, собрана всего на трех транзисторах.

Эта система управления может быть использована в самых разных областях жизни, где необходимо охлаждение посредством вентилятора, например, охлаждения материнской платы ПК, в усилителях звука, в мощных блоках питания и в иных устройствах, которые в ходе своей работы могут перегреваться. Система представляет собой сочетание двух устройств: таймера и термореле.

 Описание работы схемы  управления вентилятором

Когда температура низкая, сопротивление термистора высокое и, следовательно, первый транзистор закрыт, потому что на его базе напряжение ниже 0,6 вольт. В это время конденсатор на 100 мкФ разряжен. Второй PNP-транзистор так же закрыт, поскольку напряжение на базе равно напряжению на его эмиттере. И третий транзистор так же заперт.

При повышении температуры, сопротивление термистора уменьшается. Таким образом, напряжение на базе первого транзистора увеличивается. Когда это напряжение превысит 0,6 В, первый транзистор начинает пропускать ток заряжая конденсатор 100 мкФ и подает отрицательный потенциал на базу второго транзистора, который открывается и включает третий транзистор, который в свою очередь активирует реле.

После того, как вентилятор включается, температура уменьшается, но конденсатор 100 мкФ разряжается постепенно, сохраняя работу вентилятора в течение некоторого времени после того, как температура приходит в норму.

Подстроичный резистор (показан на схеме как 10 ком) должен иметь значение сопротивления около 10% от сопротивления термистора при 25 градусах. Термистор применен марки EPCOS NTC B57164K104J на 100 кОм. Таким образом, сопротивление подстрочного резистора (10%) получается 10 кОм. Если вы не можете найти эту модель можно использовать другой. Например, при использовании термистора 470 кОм сопротивление подстроичного составит 47 кОм.

Схема подключения вентилятора с питанием от 12 вольт.

Схема подключения вентилятора с питанием от 220 вольт

В печатной плате можно увидеть два подстроичных резистора. Первый на 10 кОм для регулирования порога срабатывания вентилятора, второй на 1 мОм позволяет регулировать время работы после нормализации температуры. Если вам нужен больший интервал времени, то конденсатор на 100 мкФ можно увеличить до 470 мкФ. Диод 1N4005 используется для защиты транзистора от индуктивных выбросов в реле.

Источник

fornk.ru

ШИМ УПРАВЛЕНИЕ КУЛЕРОМ С ТЕРМИСТОРОМ

Поскольку радиолюбителям часто нужен вентилятор для охлаждения мощных усилителей, зарядок и блоков питания, решено было создать небольшой проект для этого дела. Никто не любит шум от работы кулера, поэтому нужно использовать вентилятор, который будет отключаться когда он не нужен (температура радиатора невелика). Используя широтно-импульсную модуляцию (ШИМ), а не плавно меняющееся напряжение, можно точно контролировать скорость вращения вентилятора и увеличивать её при необходимости. Для реализации этого и соберем такую схему:

Тут использован преобразователь постоянного тока, а не линейный стабилизатор, чтобы снизить 24 В до 5 В, потому что линейный LM7805 слишком нагрелся бы, гася избыточное напряжение. 

Используется компаратор с гистерезисом, чтобы определить начальную точку включения вентилятора, основываясь на показаниях температуры (в омах) термистора, который установлен на радиаторе. Данный термистор меняет сопротивление от 10К при комнатной температуре до примерно 5К, когда радиатор сильно нагревается. 

Хитрость этой схемы заключается в том, что управляющее напряжение (CV) от таймера 555 используется для управления ШИМ. 555 генерирует импульсы и ширина импульса, а также частота, варьируются путем подачи напряжения на вход CV. Выход 555 идет на FET, который приводит в движение кулер. 

Все работает очень хорошо, но от вентилятора немного слышна низкая частота следования импульсов, поэтому нужно было использовать C4 и C5, чтобы убрать этот звук. Правда у этой конструкции есть два недостатка:

  1. Во-первых, нельзя регулировать на 100% ширину импульса. Минимум — около 30%, вентилятор вращается очень медленно, но максимум — около 70%.
  2. Другим недостатком является то, что нельзя увеличить частоту импульсов выше частоты слышимости 20 кГц, потому что тогда влияние термистора на диапазон ШИМ значительно уменьшается.

Существуют специальные контроллеры двигателей, которые позволяют решить это, на их основе сделаны две разные схемы. Один для вентилятора на 12 В и один для вентилятора на 5 В постоянного тока. Микросхема TC648 работает очень хорошо и такой ШИМ-кулер является хорошим дополнением к мощному блоку питания. 

После экспериментов решено было внести несколько изменений в схему. Сначала задействовать контакт VAS. В объяснении говорится, что для него необходимо установить порог автоматического выключения, но он также устанавливает порог включения.

Во-вторых, удалим резистор, который стоял параллельно термистору NTC. Также экспериментировали с C7, который устанавливает частоту и удаляет слышимые шумы на более низких скоростях. Это работало только с ограничением 10 нФ, но тогда ограничено регулируется скорость. Поэтому остановимся на использовании значения 1 мкФ. 

И вот последняя версия схемы управления вентилятором:

В самом простейшем варианте можно задействовать такую схему, но её возможности конечно сильно ограничены.

   Форум

   Обсудить статью ШИМ УПРАВЛЕНИЕ КУЛЕРОМ С ТЕРМИСТОРОМ


radioskot.ru

Умный вентилятор | Практическая электроника

Простому блоку питания нужен “умный вентилятор”, который охлаждает радиатор 317-й микросхемы. Причем не «тупой», который крутится постоянно, создавая лишний шум и пожирая лишнюю энергию, а такой, который работает ровно столько, сколько нужно, включаясь тогда, когда нужно. Вентилятор позволяет сэкономить на радиаторе – а стало быть, на размерах корпуса блока питания. В наш век компьютеров, вентилятор подходящих размеров добыть не проблема.

А вот управлять его работой – другой вопрос, с которым я и столкнулся.
Можно соорудить схему управления вентилятором на микроконтроллере. Нужен датчик температуры, ШИМ и программа управления. Казалось бы: что может быть проще с точки зрения схемотехники?

Но тут в дело вступает простая экономика. Самый дешевый из распространенных микроконтроллеров, нужный для этих целей – это ATTiny13. Он стоит недорого, но стОит. И где его взять колхознику? Далее: его ШИМ нужно усилить полевиком, который тоже стоит денег на рынке, недоступном для замкадовца… И самое главное: микроконтроллеру на вход, чтоб все было безупречно, надо подключить датчик температуры 1wire типа DS18B20. А он тоже стоит денег. И крепить на радиатор его неудобно. Если все эти «стоит» просуммировать, получится приличная сумма.

И тут я вспомнил о своем «аналоговом» прошлом, и помог мне в этом мой старый товарищ по радиолюбительству. Простой усилитель на составном транзисторе обеспечит мои нужды в управлении мотором вентилятора. Составной транзистор можно собрать из двух биполярных советских транзисторов, коих масса в старой теле- аудиоаппаратуре.

А вот где взять аналоговый датчик температуры, да такой, за которым не надо ехать на радиорынок и платить за него деньги? Причем, этот датчик (в отличие от DS18B20 и простых термосопротивлений) должен обеспечивать БЕСПРОБЛЕМНОЕ крепление к радиатору микросхем БП, при этом имея максимальный тепловой контакт с этим самым радиатором. Тут пришлось «покумекать» самому.

Поиски в Интернете привели к использованию в этом качестве советских транзисторов серии КТ81… Эксперименты с ними дали неутешительные результаты. И тут мой взгляд упал на выпаянные из дохлых компьютерных БП сборки диодов Шоттки. Тип, оказавшийся у меня – PHOTRON PSR10C40CT. Я замерил сопротивление двух встречно включенных диодов, и оказалось, что оно крайне зависимо от температуры.

В результате, я построил такую схему:

Вход схемы подключается к выпрямительному мосту БП. В зависимости от настройки, вентилятор может включаться даже при изменении температуры корпуса диодной сборки от комнатной до температуры пальцев человека. Прикрутить такой «датчик» к радитору БП не представляет проблем: сборка имеет отверстие для крепежа под винт М3 и нехилую площадь теплового контакта с радиатором.

Напряжение на входе схемы не должно превышать максимально допустимое напряжение микросхемы-стабилизатора. Настройка сводится к изменению сопротивления подстроечного резистора при выбранной температуре так, чтобы вентилятор начал вращаться. При повышении температуры, частота вращения будет увеличиваться.

Вот из этих радиоэлементов я собирал свою схему:

Слева направо:

– подстроечный резистор

– трехвыводный стабилизатор напряжения LM7815

– диодная сборка PSR10C40CT

– транзистор КТ815В

– транзистор BC547

На макетной плате все это выглядит вот так:

А посмотрев вот это видео, можно сразу понять принцип работы собранного устройства:

Удачи!

Автор – Вадим Борт

www.ruselectronic.com

ГАЗ 31 поколение… последнее. › Бортжурнал › Регулятор оборотов вентилятора охлаждения радиатора(из того что было под рукой).

Завалялась у меня платка DC/DC с ШИМ(ШиротноИмпульсныйМодулятор) на 555 таймере появилась идея использования этого же ШИМа для управления вентилятором системы охлаждения двигателя. Что это дает?
1.Плавное включение вентилятора без просадок бортового напряжения(достигается за счет плавного изменения напряжения на датчике) и как следствие продление жизни самого вентилятора.
2.Зависимость оборотов вентилятора от температуры двигателя.
3.Более стабильный температурный диаппазон двигателя(держится в районе 85 градусов)


Сигнал управления берем от цепи датчика температуры приборной панели, а для надежности ставим эту систему в параллель штатной(правда при этом штатную систему нужно изменить — у штатной вентилятор коммутируется по «+», нам же нужно чтобы вентилятором управлял «-«)

В результате подгонки под наши требования схемы, получаем схему регулятора на 555 таймере работающем в режиме ФИМ(фазо импульсная модуляция) и транзисторах МОСФЕТ( МОСФЕТ-ключ показан в этой схеме упрощенно, на больших токах будет сильно нагреваться): для уменьшения нагрева нужно использовать несколько мосфетов повторяя цепочку R3-VT1 в параллель, количество транзисторов зависит от мощности вентилятора 200Вт — два транзистора, 300Вт — три транзистора, при больших мощностях возможно придется усиливать выходной какскад 555 таймера:

Важный момент:для равномерного распределения тока нагрузки по мосфетам используем провода сечения 1 — 1,5 кв.мм одинаковой длинны соединяя силовые выводы мосфетов с общими точками схемы.
Так как при работе вентилятора в цепи (акумулятор-вентилятор-регулятор-корпус»земля») течет значительный ток (30А) используем в этой цепи провода сечением не менее 6 кв.мм, а для обеспечения безопасности ставим в эту цепь 40А предохранитель.
Собираем все в корпусе от комутатора зажигания 402 двигателя и размещаем на левом крыле моторного отсека(благо крепёж для монтажа там есть штатно).

один из первых вариантов (из того что было под рукой)


Настройка: прогреваем двигатель до 85 градусов и вращением движка резистора R7 добиваемся включения вентилятора на половину его мощьности. Алгоритм работы устройства такой, что при повышении температуры двигателя обороты вентилятора повышаются, при понижении температуры обороты вентилятора уменьшаются. В дальнейшем нужно произвести подстройку так чтобы при 80-82 градусах вентилятор не включался.

Пы.Сы. Практика использования показала что работа устройства далека от совершенства и его эффективность сильно зависит от состояния радиатора (если теплоотдача радиатора «как у нового» то это устройство вп

www.drive2.ru

Простые терморегуляторы в блоках питания — Все для «кулера» (Вентилятора) — Компьютер и электроника к нему!!!

Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.

По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова [1]. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1— VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.


Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1


Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой . Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Рис.2


Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру на ощупь можно, только выключив компьютер.

Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Рис.3

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.

Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.



Рис.4

Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Рис.5

Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в [2]. Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник [2]. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6

cxema.my1.ru

Автоматический регулятор оборотов кулера


Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема



Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора


Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.

Скачать плату:
shema.zip [2,09 Kb] (cкачиваний: 771)
После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Настройка


Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.

sdelaysam-svoimirukami.ru

0 comments on “Схема управления кулером от температуры – Система автоматического управления вентилятором. — Радио-как хобби

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *