Схема усилитель звука – Самый простой усилитель звука | Практическая электроника

Простейший усилитель звука на одном транзисторе за 15 минут


Привет, Самоделкины! Если у Вас есть динамик и источник звука, но нечем его усилить — то в этой статье мы расскажем Вам, как собрать усилитель из хлама =)

Для этого нам потребуются следующие компоненты и инструменты:
1. n-p-n кремниевый транзистор КТ805 или его аналоги. (этот самый мощный в серии)
2. Электролитический конденсатор емкостью 100мкФ и напряжением более 16 вольт
3. переменный резистор около 5кОм
4. монтажная плата (необязательно — можно сделать навесным монтажем)
5. радиатор
6. провода
7. разъем мини джек
8. блок питания 5-12 В постоянного тока
9. паяльник, канифоль, припой .
(вот такой подобран хлам)

Первым делом устанавливаем компоненты на монтажную плату.

К базе КТ805 припаиваем центральный вывод переменного резистора и отрицательный вывод конденсатора.

Второй вывод переменного резистора — это + питания и + динамика припаиваем на плату
Коллектор транзистора (центральный контакт) будет минус динамика.

К эмиттеру подключаем минус питания и отрицательный провод входного сигнала. Положительным проводом является + конденсатора.

Для тестов остается припаять 3 пары проводов Вход Выход и Питание (на фото слева направо). Транзистор устанавливаем на радиатор.

Приступаем к тестам и настройке. Собираем и подключаем все компоненты на столе, строго соблюдая полярность! Желательно и схему проверить на наличие коротких замыканий.

Нашим подстроечным резистором подбираем правильный режим работы. Короче говоря согласуем работу транзистора с сопротивлением динамика.

Ура! Настройка прошла успешно! Окультуриваем и устанавливаем все в корпус.

Всем удачи и хороших идей!

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Мощный и качественный самодельный усилитель звука

Недавно обратился некий человек с просьбой собрать ему усилитель достаточной мощности и раздельными каналами усиления по низким, средним и высоким частотам. Подобные усилители до этого не раз уже собирал для себя в качестве эксперимента и, надо сказать, эксперименты были весьма удачными. Качество звучания даже недорогих колонок не очень высокого уровня заметно при этом улучшается по сравнению, например, с вариантом применения пассивных фильтров в самих колонках. К тому же появляется возможность довольно легко менять частоты раздела полос и коэффициент усиления каждой отдельно взятой полосы и, таким образом, проще добиться равномерной АЧХ всего звукоусилительного тракта. В усилителе были применены готовые схемы, которые до этого не раз были опробованы в более простых конструкциях.

Структурная схема

На рисунке ниже показана схема 1 канала:

Как видно из схемы, усилитель имеет три входа, один из которых предусматривает простую возможность добавления предусилителя-корректора для проигрывателя винила (при такой необходимости), переключатель входов, предварительный усилитель-тембролок (также трёхполосный, с регулировкой уровней ВЧ/СЧ/НЧ), регулятор громкости, блок фильтров на три полосы с регулировкой уровня усиления каждой полосы с возможностью отключения фильтрации и блок питания для оконечных усилителей большой мощности (нестабилизированный) и стабилизатор для «слаботочной» части (предварительные каскады усиления).

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания. В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904. Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах). Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

Блок фильтров

Схем фильтров, также, при желании можно найти множество, так как публикаций на тему многополосных усилителей сейчас достаточно. Для облегчения этой задачи и просто для примера, я приведу здесь несколько возможных схем, найденных в различных источниках:

— схема, которая была применена мной в этом усилителе, так как частоты раздела полос оказались как раз такие, которые и нужны были «заказчику» — 500 Гц и 5 кГц и ничего пересчитывать не пришлось.

— вторая схема, попроще на ОУ.

И ещё одна возможная схема, на транзисторах:

Как уже писал ваше, выбрал первую схему из-за довольно качественной фильтрации полос и соответствии частот разделения полос заданным. Только на выходах каждого канала (полосы) были добавлены простые регуляторы уровня усиления (как это сделано, например, в третьей схеме, на транзисторах). Регуляторы можно поставить от 30 до 100 кОм. Операционные усилители и транзисторы во всех схемах можно заменить на современные импортные (с учётом цоколёвки!) для получения лучших параметров схем. Никакой настройки все эти схемы не требуют, если не требуется изменить частоты раздела полос. К сожалению, дать информацию по пересчёту этих частот раздела я не имею возможности, так как схемы искались для примера «готовые» и подробных описаний к ним не прилагалось.

В схему блока фильтров (первая схема из трёх) была добавлена возможность отключения фильтрации по каналам СЧ и ВЧ. Для этого были установлены два кнопочных переключателя типа П2К, с помощью которых просто можно замкнуть точки соединения входов фильтров — R10C9 с их соответствующими выходами — «выход ВЧ» и «выход СЧ». В этом случае по этим каналам идёт полный звуковой сигнал.

Усилители мощности

С выхода каждого канала фильтра сигналы ВЧ-СЧ-НЧ подаются на входы усилителй мощности, которые, также, можно собрать по любой из известных схем в зависимости от необходимой мощности всего усилителя. Я делал УМЗЧ по известной давно схеме из журнала «Радио», №3, 1991 г., стр.51. Здесь даю ссылку на «первоисточник», так как по поводу этой схемы существует много мнений и споров по повод её «качественности». Дело в том, что на первый взгляд это схема усилителя класса «B» с неизбежным присутствием искажений типа «ступенька», но это не так. В схеме применено токовое управление транзисторами выходного каскада, что позволяет избавиться от этих недостатков при обычном, стандартном включении. При этом схема очень простая, не критична к применяемым деталям и даже транзисторы не требует особого предварительного подбора по параметрам К тому же схема удобна тем, что мощные выходные транзисторы можно ставить на один теплоотвод попарно без изолирующих прокладок, так как выводы коллекторов соединены в точке «выхода», что очень упрощает монтаж усилителя:

При настройке лишь ВАЖНО подобрать правильные режимы работы транзисторов предоконечного каскада (подбором резисторов R7R8) — на базах этих транзисторов в режиме «покоя» и без нагрузки на выходе (динамика) должно быть напряжение в пределах 0,4-0,6 вольт. Напряжение питания для таких усилителей (их, соответственно, должно быть 6 штук) поднял до 32 вольт с заменой выходных транзисторов на 2SA1943 и 2SC5200, сопротивление резисторов R10R12 при этом следует также увеличить до 1,5 кОм (для «облегчения жизни» стабилитронам в цепи питания входных ОУ). ОУ также были заменены на ВА4558, при этом становится не нужна цепь «установки нуля» (выходы 2 и 6 на схеме) и, соответственно меняется цоколёвка при пайке микросхемы. В результате при проверке каждый усилитель по этой схеме выдавал мощность до 150 ватт (кратковременно) при вполне адекватной степени нагрева радиатора.

Подробнее об этом усилителе всё же рекомендовал бы посмотреть информацию в «первоисточнике», там очень подробно расписаны варианты, принципы построения, настройки и работы.

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме. Для питания НЧ полосных каналов (левый и правый каналы) — трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания. Для СЧ и ВЧ каналов — трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

В общем, блок питания может быть и с одним трансформаторм, конечно, но при его соответствующей мощности. Мощность усилителя в целом в данном случае определяется исключительно возможностями источника питания. Все предварительные усилители (темброблок, фильтры) — запитаны также от одного из этих трансформаторов (можно от любого из них), но через дополнительный блок двуполярного стабилизатора, собранный на МС типа КРЕН (или импортных) или по любой из типовых схем на транзисторах.

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты :-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта 2shemi.ru).

2shemi.ru

Транзисторный усилитель 50W своими руками

Приветствую, Самоделкины!
Усилители мощности низкой частоты или просто усилитель звука, собираются радиолюбителями довольно часто. Специализированные микросхемы усилителей мощности низкой частоты сейчас довольно популярны и после сборки некоторых УНЧ на базе микросхем, радиолюбитель стремится к чему-то более сложному. Транзисторные усилители, несмотря на огромное разнообразие микросхем, не потеряли свою актуальность. Если нужен хороший качественный усилитель, то стоит собрать его на транзисторах. Сегодня мы поговорим о неплохом транзисторном усилителе, работающим в классе b. Не спешите с выводами, класс b тоже бывает неплохим.


Истинные ценители сверх высококачественного звука наверняка скажут, что это не самый лучший класс УНЧ, однотактный и ламповый — вот каким должен быть качественный усилитель. Я конечно же отчасти с вами согласен, но цены ламповых усилителей, сами видите:


А собрать их дома тоже процесс не из легких.

Представленная схема была опубликованная в журнале «Радио» в 1991 году.


Это легендарный усилитель Дорофеева, так что он имеет довольно преклонный возраст. Гениальность схемы заключается в простоте. Несмотря на минимальное количество используемых компонентов с соответствующим источником питания данный усилитель способен отдавать в нагрузку 4 Ома, мощность до 50 ватт, что согласитесь, очень даже неплохо. В разное время радиолюбители дорабатывали и изменяли схему. Для удобства, автор перевел схему на импортные компоненты, далее будем рассматривать именно ее.

В данном усилителе применены довольно интересные схематические решения, например, резистор R12, которой ограничивает коллекторный ток транзистора выходного каскада и является своеобразным ограничителем выходной мощности, одновременно защищает выходные транзисторы от коротких замыканий. Так что усилитель короткого, можно сказать, не боится.

Указанный резистор нужен одноваттный, в крайнем случае можно на пол ватта. Коэффициент нелинейных искажений при чистоте в 1 кГц не более 0,1 %, при 20 кГц — 0,2%, так что на слух никаких искажений при номинальной мощности не будет. Питается усилитель от двухполярного источника. Диапазон питающих напряжений от +- 15 до +- 25В.

С целью увеличения выходной мощности, можно увеличить питающее напряжение, но в этом случае нужно менять и транзисторы оконечного каскада на более мощные и пересчитать несколько резисторов.

Резисторы r9 и r10 подбираются в зависимости от питающего напряжения.

Они ограничивают ток через стабилитрон и в этой части схемы собран параметрический стабилизатор напряжения, которое обеспечивает стабильное питание для операционного усилителя.


Кстати, об операционнике, это довольно неплохой операционный усилитель, применяется в аудиотехнике очень часто. Можно спокойно менять на TL081.


В случае замены на иные операционные усилители, стоит обратить внимание на распиновку, так как расположение выводов может быть иным. Операционный усилитель советую установить на панельку беспаячного монтажа, для быстрой замены в случае чего. Кстати, у этого автора есть и вторая версия данного усилителя, на сей раз полностью на транзисторах, она сейчас перед вами:

Несколько слов о печатной плате, мастер старался ее сделать максимально компактной, вроде бы получилось неплохо.


Ссылку на скачивание найдете в описании под видеороликом автора (внизу страницы). На плате имеются перемычки, их желательно запаять в первую очередь.

Транзисторы предвыходного и выходного каскада, устанавливаются на общий теплоотвод. Естественно не забываем их изолировать от радиатора.

В выходном каскаде стоит использовать транзисторы с мощностью рассеивания не менее 50-60 ватт, с напряжением коллектор-эмиттер не менее 60 В, а лучше 80 или 100 В, но тут тоже всё зависит от напряжения питания.


Как видно из схемы, в выходном и предвыходном каскаде, использованы комплементарные пары транзисторов. Очень и очень желательно подобрать транзисторы по коэффициенту усиления. Некоторые мультиметры имеют функцию проверки этого параметра, но можно использовать транзистор-тестер.

Стабилитроны можно на 0,5 Вт, с напряжением стабилизации от 14 до 18 В.


Пару слов об источнике питания.

В случае трансформаторного блока питания желательно использовать фильтрующие конденсаторы с емкостью не менее 4700 мкФ, тут чем больше тем лучше.


Усилитель работает в классе b и КПД на довольно высоком уровне, но в любом случае, источник питания нужен с некоторым запасом. Поэтому необходимо взять трансформатор с габаритной мощностью от 70 Вт. Как звучит усилитель вы можете узнать, посмотрев видеоролик автора. Должен заметить, что во время тестов будет слышен некий фон, это связано с тем, что в блоке питания у автора проекта использованы конденсаторы очень малой емкости, всего 1000 мкФ в плече.

Качество в принципе хорошее, на уровне микросхем TDA2030 – 2050. С хорошим источником питания и по мощности, и по качеству, вполне может конкурировать с микросхемами наподобие TDA7294.

На этом все. В описании под видео помимо архива проекта со схемой и платой, найдете ссылки на комплектующие для сборки такого же усилителя, а также на готовые платы усилителей низкой частоты на любой вкус.

Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Схемы усилителей | 2 Схемы

Схемы принципиальные усилителей звука разной мощности — для наушников, компьютерных колонок и мощных АС 100-1000 ватт. Все УНЧ подходят для сборки своими руками (есть печатные платы).

Представляем ещё один самодельный усилителя на знаменитой микросхеме TDA7294. Это усилитель по системе 2.1. Канал сабвуфера — это TDA7294 в мостовом включении, а на стереоканалы …

Обзор знаменитой схемы двухтактного усилителя класса A, использующего JFET и MOSFET в очень простой двухступенчатой комплементарной схеме включения — немного похожей на Aleph J. Данный …

По мнению многих радиолюбителей, LM3886 — одна из самых уважаемых микросхем для усилителей звука. Причиной её популярности является очень низкий уровень искажений, минимальные внешние компоненты …

Отличная микросхема для сборки самодельного усилитель с довольно большой мощностью это TDA2050. Но представленная инструкция подходит и к любой другой похожей по структуре м/с, например …

Недавно прослушанный у друга усилитель побудил тоже сделать себе А-класс УНЧ на наушники. Конструкция этого усилителя настолько проста, что даже начинающим радиолюбителям это удастся. В …

Усилитель выполнен в виде двух моноблоков, скрученных вместе и так как несмотря на то, что схема была разработана лет 30 назад, звук действительно отличный. Усилитель …

Это несложное, но очень полезное в быту устройство — самодельный усилитель звука для наушников, он питается от двух AAA батареек на 3 В и имеет …

Представляем концепцию двух стереоусилителей с низким энергопотреблением и рабочим напряжением для питания небольших колонок или наушников. Было несколько мотивов для реализации этого проекта. Одним из …

Различные усилители звука, как микрофонные, так и мощные оконечные УМЗЧ, нуждаются при настройке в эталонном сигнале постоянной величины. Многие испытывают и настраивают схемы УНЧ просто …

Усилитель. Под этим словом большинство людей понимают обычную коробку с парой регуляторов и кнопок. Новички в электронике уже представляют, что это такая плата с микросхемой, …

Представляем очередной мини-проект предусилителя для проигрывателей виниловых дисков. В отличие от предыдущих конструкций он сделан на современных малошумящих полевых транзисторах. Это очень простой усилитель для …

Поводом сделать эту конструкцию был неплохой проигрыватель пластинок Унитра и довольно большая коллекция винила. Блок, к которому был подключен проигрыватель в годы его использования, где-то …

После постройки больших акустических систем оказалось, что им существенно для раскачки не хватает мощности, и было принято решение собрать усилитель НЧ, который был бы достаточно …

Представляем полностью цифровой усилитель НЧ класса D на мощность обеих каналов 1000 Вт. Корпус был взят от предыдущих проектов не слишком устраивавших по работе усилителей. …

Сейчас редакция 2shemi.ru покажет несколько вариантов исполнения знаменитого низкобюджетного усилителя мощности звука на двух чипах TDA7294. Усилитель предназначен для подключения к нему двух АС мощностью …

Этот микрофонный усилитель был сделан потому, что шум и недостаточная чувствительность магазинных гарнитур и микрофонов для компьютера были крайне раздражающими, а покупать высококачественные за 50+ …

Всем доброго времени. Позвольте представить силовой инвертор для питания мощного аудиоусилителя. К сожалению, в интернете мало таких проектов, особенно хорошо повторяемых. Поэтому решено было сделать …

Мощные колонки это конечно хорошо, вот только не всегда есть возможность слушать музыку на такой громкости, часто приходится сидеть дома в наушниках, чтоб не беспокоить …

Те, кто собирают усилители звука своими руками, обычно начинают с простых схем на пару десятков ватт, затем беруться за 500-ваттных монстров и после долгого пути …

Сначала возникла идея купить мощную мобильную блютус колонку, но фирменные JBL стоят до 300$, к тому же мощность их редко превышает 40 ватт, поэтому решено …

2shemi.ru

Схема усилителя звука на микросхеме

Схема усилителя звука на микросхеме-1Схема усилителя звука на микросхеме-1

Схема усилителя звука на микросхеме — Hi-Fi усилитель на TDA7294

Схема усилителя звука на микросхеме — несмотря на относительную простоту, обеспечивает довольно высокие параметры. Вообще-то, по правде говоря, у «микросхемных» усилителей есть ряд ограничений, поэтому усилители на «рассыпухе» могут обеспечить более высокие показатели. В защиту микросхемы (а иначе почему я и сам ее использую, и другим рекомендую?) можно сказать:

Простая и эффективная схема

  • схема очень простая
  • и очень дешевая
  • и практически не нуждается в наладке
  • и собрать ее можно за один вечер
  • а качество превосходит многие усилители 70-х … 80-х годов, и вполне достаточно для большинства применений (да и современные системы до 300 долларов могут ей уступить)
  • таким образом, усилитель подойдет и начинающему, и опытному радиолюбителю (мне, например, как-то понадобился многоканальный усилитель проверить одну идейку. Угадайте, как я поступил?).

В любом случае, плохо сделанный и неправильно настроенный усилитель на «рассыпухе» будет звучать хуже микросхемного. А наша задача — сделать очень хороший усилитель. Надо отметить, что звучание усилителя очень хорошее (если его правильно сделать и правильно питать), есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294! И наш усилитель ничуть не хуже!!!

Схема усилителя звука на микросхеме — это практически повторение схемы включения, предлагаемой производителем. И это неслучайно — уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы.

Схема усилителя звука на микросхеме-2Схема усилителя звука на микросхеме-2

Входной тракт

Входная цепочка R1C1 представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя — ХХI век — это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально — я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе будет стоять регулятор громкости, то в самый раз — его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше — лучше, но нарушится закон регулирования).

Далее цепочка R2C2 выполняет прямо противоположную функцию — не пропускает на вход частоты ниже 7 Гц. Если для вас это слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низких. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. И помните, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3! И еще. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже:

С2[мкФ] = 1000 / ( 6,28 * Fmin[Гц] * R2[кОм])

Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по даташиту, но это и лучше — слишком низкое входное сопротивление может «не понравиться» источнику сигнала. Учтите, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33…68 кОм (большее сопротивление снизит помехоустойчивость).

Схема усилителя звука на микросхеме , а именно схема включения усилителя — не инвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:

Ку = R4 / R3 + 1 = 28,5 раза = 29 дБ

Коэффициент усиления

Это почти равно оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учтите, что делать Ку меньше 20 нельзя — микросхема может само возбуждаться. Больше 60 его также делать не стОит — глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 50 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.

Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что приятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние С4. Об этом поподробнее. Схема усилителя звука на микросхеме работает в такой последовательности: конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:

f [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ] ) = 1,3 Гц

Уменьшение искажений

Эта частота и должна быть очень низкая. Дело в том, что С3 — электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжение на нем увеличивается (выходное напряжение усилителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать не полярный конденсатор, но я не могу однозначно сказать, улучшится от этого звук, или ухудшится: не полярный конденсатор это «два в одном» полярных, включенных встречно.

Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) — они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, ценой 7-12 евро за штуку неплохо работает и на 20 кГц). Пленочный конденсатор С4 «берет высокие частоты на себя», тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 — тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.

Устойчивость усилителя

Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но мне попадались экземпляры микросхем, которые без этой цепи работали хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.

Схема усилителя звука на микросхеме , и в частности конденсаторы С8 и С9 осуществляют так называемую вольт-добавку. Через них часть выходного напряжения поступает обратно в пред оконечный каскад и складывается в напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение вольт на 5 меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольт-добавки выходное напряжение микросхемы было бы вольт на 10 меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Управление режимами Mute и StdBy

Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания (см. Режимы Mute и StandBy в микросхеме TDA7294/TDA7293). Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при «неправильной» их последовательности , так что такое управление нужно больше для собственного удовольствия.

Конденсаторы С10-С13 фильтруют питание. Их использование обязательно — даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах)! Уменьшать емкости не стОит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны — не жалейте припоя. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Разделение входной и выходной земли

И, наконец, резистор R10. Он служит для разделения входной и выходной земли. «На пальцах» его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по «земляному» проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по «земле»). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении «земляного» провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет, только всякую гадость. Сопротивление резистора R10 хоть и мало (оптимальное значение 1…5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.

В принципе, при хорошей разводке платы (а она у меня хорошая) этого не произойдет, но с другой стороны, что-то подобное может случиться в «макромасштабе» по цепи источник_сигнала-усилитель-нагрузка. Резистор поможет и в этом случае. Впрочем, его можно вполне заменить перемычкой — он использован исходя из принципа «лучше перебдеть, чем недобдеть».

Источник питания

Схема усилителя звука на микросхеме питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).

Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт — микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):

Схема усилителя звука на микросхеме-3Схема усилителя звука на микросхеме-3

Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:

Схема усилителя звука на микросхеме-4Схема усилителя звука на микросхеме-4

где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип — напряжения одного плеча источника питания в режиме молчания.

Мощность блока питания

Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).

Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на вторичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания:

Скачать —>> PowerSup (zip-файл около 230 кБайт ). И не забывайте, что схема усилителя звука на микросхеме требует вдвое более мощный блок питания (при расчете по предлагаемой программе все учитывается автоматически).

От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику — малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных «просадок» и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повысится в 10-100 раз, хотя «на вид» там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио — это сложное и недешевое устройство, поэтому изготовить «старомодный» аналоговый блок питания будет зачастую проще и дешевле.

Печатная плата односторонняя и имеет размеры 65х70 мм:

Схема усилителя звука на микросхеме-5Схема усилителя звука на микросхеме-5 Схема усилителя звука на микросхеме-6Схема усилителя звука на микросхеме-6

Разводка печатной платы

Схема усилителя звука на микросхеме, плата которого разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в «экран» из разделенной земли — входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клеммники для подключения входа, выхода и питания — место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять — так надежнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении «лазерно-утюжным» методом если где и не «пропечатается» квадрат 1 мм х 1 мм, то не страшно — все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

Дорожки рекомендуется облудить — и сопротивление меньше, и коррозия.

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся… С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц — там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих «аудиофильских» я считаю неоправданным экономически, а дешевые «керамические» дадут худший звук (это по идее, в принципе — пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. Схема усилителя звука на микросхеме имеет на печатной плате нанесенные значки полярности подключения всех электролитических конденсаторов и диода. Диод — любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3 — можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.

Теплоотвод для микросхемы

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с «минусом» питания. Отсюда возникают два способа установки ее на радиатор:

Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.

Первый вариант рекомендуется, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор — больше.

Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.

Схема усилителя звука на микросхеме — налаживание

Общение в интернете показывает, что 90% всех проблем с аппаратурой составляет ее «не налаженность». То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и во всеуслышание объявляет схему плохой. Поэтому наладка — самый важный (и зачастую самый сложный) этап создания электронного устройства.

Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс» и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой — предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы — при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Ток покоя микросхемы

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в «земляном» проводе от источника; перепутаны «плюс» и «минус»; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что схема усилителя звука на микросхеме держит нормальный ток покоя, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с не подключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Если и тут все в порядке, подключаем нагрузку, еще раз проверяем на отсутствие возбуждения уже с нагрузкой, и все — можно слушать!

Дополнительное тестирование

Но лучше все же провести еще один тест. Дело в том, что самым, на мой взгляд, мерзким видом возбуждения усилителя, является «звон» — когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде. Потому что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится колоссально из-за огромных интер-модуляционных искажений. Причем на слух это обычно воспринимается как «тяжелый» звук, т.е. без всяких дополнительных призвуков (т.к. частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает, и решит, что микросхема «плохая», и «не звучит».

Еслиcхема усилителя звука на микросхеме правильно собрана и нормальный источник питания такого быть не должно.

Однако иногда бывает, и цепь С7R9 как раз и борется с такими вещами. НО! В нормальной микросхеме все ОК и при отсутствии С7R9. Мне попадались экземпляры микросхемы со звоном, в них проблема решалась введением цепи С7R9 (поэтому я ее и использую, хоть в даташите ее и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, «поигравшись» с сопротивлением (его можно уменьшить до 3 Ом), но я бы не советовал использовать такую микросхему — это какой-то брак, и кто его знает, что в ней еще вылезет.

Проблема в том, что «звон» можно увидеть только на осциллографе, это когда схема усилителя звука на микросхеме получает сигнал со звукового генератора (на реальной музыке его можно и не заметить) — а это оборудование есть далеко не у всех радиолюбителей. (Хотя, если хотите эти делом хорошо заниматься, постарайтесь такие приборы заметь, хотя бы где-то ими пользоваться). Но если желаете качественного звука — постарайтесь провериться на приборах — «звон» — коварнейшая вещь, и способен повредить качеству звучания тысячей способов. Мои платы:

Схема усилителя звука на микросхеме-7Схема усилителя звука на микросхеме-7
печатка изготовлена с помощью ЛУТ

Схема усилителя звука на микросхеме-8Схема усилителя звука на микросхеме-8 Схема усилителя звука на микросхеме-9Схема усилителя звука на микросхеме-9

«Настольная» проверка усилителя

Схема усилителя звука на микросхеме после предварительного включение на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

Схема усилителя звука на микросхеме-10Схема усилителя звука на микросхеме-10 Схема усилителя звука на микросхеме-11Схема усилителя звука на микросхеме-11

Предварительное включение усилителя на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

Скачать вложения: HiFi7294
Источник: electroclub.info

usilitelstabo.ru

Усилитель звука на транзисторах

Усилитель звука на транзисторах
Транзисторные усилители, несмотря на появление более современных микросхемных, не потеряли свой актуальности. Достать микросхему бывает, порой, не так легко, а вот транзисторы можно выпаять практически из любого электронного устройства, именно поэтому у заядлых радиолюбителей иногда накапливаются горы этих деталей. Для того, чтобы найти им применение предлагаю к сборке незатейливый транзисторный усилитель мощности, сборку которого осилит даже начинающий.

Схема


Усилитель звука на транзисторах
Схема состоит из 6-ти транзисторов и может развивать мощность до 3-х ватт при питании напряжением 12 вольт. Этой мощности хватит для озвучивания небольшой комнаты или рабочего места. Транзисторы Т5 и Т6 на схеме образуют выходной каскад, на их место можно поставить широко распространённые отечественные аналоги КТ814 и КТ815. Конденсатор С4, который подключается к коллекторам выходных транзисторов, отделяет постоянную составляющую сигнала на выходе, именно поэтому данный усилитель можно использовать без платы защиты акустических систем. Даже если усилитель в процессе работы выйдет из строя и на выходе появится постоянное напряжение, оно не пройдёт дальше этого конденсатора и динамики акустической системы останутся целы. Разделительный конденсатор С1 на входе лучше применить плёночный, но если такого нет под рукой, подойдёт и керамический. Аналогом диодов D1 и D2 в данной схеме являются 1N4007 или отечественные КД522. Динамик можно использовать сопротивлением 4-16 Ом, чем ниже его сопротивление, тем большую мощность будет развивать схема.

Усилитель звука на транзисторах

Сборка усилителя


Собирается схема на печатной плате размерами 50х40 мм, рисунок в формате Sprint-Layout к статье прилагается. Приведённую печатную плату при печати необходимо отзеркалить. После травления и удаления тонера с платы сверлятся отверстия, лучше всего использовать сверло 0,8 — 1 мм, а для отверстий под выходные транзисторы и клеммник 1,2 мм.
Усилитель звука на транзисторах
После сверления отверстий желательно залудить все дорожки, тем самым уменьшить их сопротивление и защитить медь от окисления. Затем впаиваются мелкие детали – резисторы, диоды, после чего выходные транзисторы, клеммник, конденсаторы. Согласно схеме, коллекторы выходных транзисторов должны соединяться, на данной плате это соединение происходит путём замыкания «спинок» транзисторов проволокой или радиатором, если он используется. Радиатор требуется ставить в том случае, если схема нагружена на динамик сопротивлением 4 Ома, или если на вход подаётся сигнал большой громкости. В остальных же случаях выходные транзисторы почти не нагреваются и не требуют дополнительного охлаждения.
Усилитель звука на транзисторах
Усилитель звука на транзисторах
После сборки обязательно нужно смыть остатки флюса с дорожек, проверить плату на наличие ошибок сборки или замыканий между соседними дорожками.

Настройка и испытания усилителя


После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.
Усилитель звука на транзисторах
Усилитель звука на транзисторах

sdelaysam-svoimirukami.ru

Как сделать простейший усилитель звука


Многие интересуются способом изготовления портативных колонок или динамиков для смартфонов и планшетов. Однако перед тем, как приступить к изготовлению самих динамиков, нужно позаботиться об усилителе. В этом материале мы сделаем обзор видеоролика, который посвящен сборке простейшего усилителя.

А начнем с просмотра авторского видеоматериала

[media=https://www.youtube.com/watch?v=FRXbFRzczF8]

Итак, что же нам понадобится, чтобы собрать усилитель:
— коннектор для кроны;
— крона на 9 вольт;
— динамик 0.5-1 Вт и сопротивлением 8 Ом;
— мини джек на 3.5 мм;
— резистор на 10 Ом;
— выключатель;
— микросхема ЛМ386;
— конденсатор на 10 вольт.

Чтобы процесс сборки не показался очень сложным, представляем вашему вниманию схему будущего усилителя.


Посмотрев на микросхему с более близкого расстояния, можно увидеть, что она имеет по четырем лапкам с обеих сторон. В сумме получается 8 лапок. Для того, чтобы не перепутать и не перевернуть микросхему вверх ногами и тем самым ошибиться с пайкой, на микросхеме предусмотрена небольшая метка похожая на полукруг. Эта метка должна располагаться сверху.

Начнем с пайки первого провода, который будет идти к выключателю и плюсовому контакту кроны. Этот проводок необходимо припаять к шестой лапке микросхеме, то есть второй снизу на правой стороне.


Следующий конец проводка необходимо припаять к выключателю. Тут стоит отметить, что по словам автора идеи, сама схема не представляет никакой трудности и со сборкой может справиться даже тот, кто не имеет особых навыков в электронике.

После успешной пайки первого провода нужно перейти ко второму контакту выключателя, который на данный момент свободен. Тут нужно припаять плюсовой провод, идущий от коннектора кроны. После такой несложной пайки, можно сказать, что первый этап изготовления усилителя успешным образом пройден.

Перейдем к следующей лапке, которая на схеме отмечена цифрой 5 и находиться непосредственно под шестой лапкой, то есть той, к которой мы припаяли провод на предыдущем этапе работы. К этой лапке нужно припаять плюсовой контакт конденсатора.

От конденсатора у нас остается минусовой контакт, который необходимо припаять к плюсовому контакту динамика. При желании можно отказаться от прямой пайки конденсатора к динамику, чтобы уберечь его от возможных повреждений, как это делает автор. В таком случае нужно укоротить контакт конденсатора и удлинить его проводком.

После этого можно припаять проводок от минуса конденсатора к плюсу динамика.

Минусовой контакт динамика необходимо припаять к четвертой и второй лапкам на микросхеме. Соответственно это нижняя и вторая сверху лапки на левой стороне. Для этого берем проводок и припаиваем к минусу динамика.

После этого соединяем этот провод с четвертой лапке микросхемы.

Чтобы соединить этот же провод со второй лапкой, необходимо сделать перемычку. Берем короткий проводок. Один конец припаиваем к четвертой лапке, на которой уже есть один провод, а второй конец – ко второй лапке.

К третей лапке с левой стороны, то есть той, которая находиться между предыдущими двумя, мы должны припаять резистор.

Ко второй ножке резистора припаиваем проводок, который будет идти к плюсовому контакте на мини джеке.


Разбираем мини джек. На мини джеке, который использует автор, есть два контакта – на левый и правый каналы. Их нужно соединить между собой и припаиваем провод, идущий от резистора к контактам.

Минус или массу от джека нужно припаять к минусовому контакту на динамике.

В заключении остается припаять минус от коннектора кроны к минусу на динамике.

После таких несложных манипуляций можно получить очень эффектный усилитель, который мы будем использовать для изготовления портативной колонки для планшета или смартфона.
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

0 comments on “Схема усилитель звука – Самый простой усилитель звука | Практическая электроника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *