Микросхемы преобразователи напряжения схемы – 17 DC-DC

Как работают импульсные преобразователи напряжения (27 схем)

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов:

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

 

 

Рис. 1. Принцип действия понижающего преобразователя напряжения.

 

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

 

 

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

 

 

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

 

 

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА.

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30…80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

 

 

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3…5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

 

 

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

 

 

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА, Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150…450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения на основе КР1006ВИ1

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80…90 мА образуется напряжение 400…425 В. Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

 

 

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

 

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В. На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения со стабильными 30В

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

 

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

 

 

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения [4.1] показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА, второй — позволяет получить напряжение отрицательной полярности (-19,4 В) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А  2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.

Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двухполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра СЗ и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

 

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%.

Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем.

В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения, используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

 

 

Рис. 4.19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5…5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0…4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Источник питания для питания портативных и карманных приемников

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 4.23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1…2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 4.24 и 4.25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

 

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

 

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

www.qrz.ru

Повышающие импульсные преобразователи напряжения DC-DC

Казалось бы, всё просто как бублик: слепили из простых и доступных ингредиентов генератор, присовокупили к нему повышающий трансформатор, мостик, всякие там дела… Вот, собственно, и всё — дело сделано, сказка сказана, можно закрывать тему.

— Но мы же не можем прямо тут… У нас же есть какие-то морально-этические принципы…
— Так сегодня ж понедельник!
— Понедельник, конечно, но не до такой же степени. Поэтому говорить будем много, нудно и обстоя- тельно.

А обсудим мы на этой странице повышающие преобразователи напряжения, не омрачённые такими редко любимыми в радиолюбительских кругах моточными изделиями, как силовые (или импульсные) трансформаторы.

Начнём с устройств, выполненных на цепях диодно-конденсаторных умножителей напряжения.


Рис.1

Простой преобразователь напряжения на одной К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме, приведённой на Рис.1. Преобразователь содержит задающий генератор, реализованный на первых двух инверторах КМОП микросхемы DD1, и буферного выходного каскада, предназначенного для увеличения выходного тока преобразователя и выполненного на включённых параллельно оставшихся элементов ИМС.
Диоды VD1, VD2, а так же конденсаторы С2, С3 образуют цепь удвоения напряжения.
При указанных на схеме номиналах элементов — генератор импульсов, работает на частоте 10 кГц. При напряжении питания 10В — выходное напряжение составляет 17В при токе нагрузки 5мА, 16В при токе 10мА, 14,5В при токе 15мА.
Значение КПД и величину выходного напряжения преобразователя можно увеличить за счёт использования в выпрямителе-умножителе напряжения германиевых диодов, либо диодов Шоттки.
А для получения отрицательного выходного напряжения — элементы удвоителя напряжения следует включить в соответствии с правой частью рисунка Рис.1.

Для увеличения мощности повышающих преобразователей между генератором и умножителем вводятся дополнительные биполярные или полевые транзисторы с максимальным допустимым током, превышающим ток нагрузки.


Рис.2

Устройство, представленное на Рис.2, образуют задающий генератор, собранный на логических элементах DD1.1 и DD1.2, буферные ступени DD1.3, DD1.4, усилители тока VT1, VT2 и выпрямитель-удвоитель напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ.
При питании преобразователя от источника постоянного тока напряжением 12 В его выходное напряжение при токе нагрузки 30 мА будет около 22 В (напряжение пульсаций — 18 мВ).
При токе нагрузки 100 мА выходное напряжение уменьшается до 21 В, а при 250 мА — до 19,5 В.
Без нагрузки преобразователь потребляет от источника питания ток не более 2 мА.
Транзисторы VT1 и VT2 преобразователя могут быть любыми из указанных на схеме серий, а также ГТ402В или ГТ402Г, ГТ404В или ГТ404Г. С германиевыми транзисторами выходное напряжение преобразователя будет больше примерно на 1 В.

Для получения больших выходных напряжений применяются схемы преобразователей напряжения с многокаскадными умножителями.


Рис.3

На Рис.3 приведена схема экономичного преобразователя напряжения для питания варикапов, опубликованная в журнале Радио №10, 1984, И. Нечаевым.
«Преобразователь не содержит намоточных деталей, экономичен и прост в налаживании. Устройство состоит из генератора прямоугольных импульсов на микросхеме DD1, умножителя напряжения на диодах VD1-VD6 и конденсаторах СЗ-С8, параметрического стабилизатора напряжения на транзисторах VT1-VT3.
В качестве стабилитронов используются эмиттерные переходы транзисторов. Режим стабилизации наступает при токе 5…10мкА.
Помимо указанных на схеме, в преобразователе можно использовать микросхемы К176ЛЕ5 и К176ЛА9, транзисторы КТ315, КТ316 с любым буквенным индексом, диоды Д9А, Д9В, Д9Ж. Конденсаторы С1-С7 — КЛС или KM, C8 — К50-6 или К50-3, резисторы МЛТ или ВС.
Налаживание преобразователя сводится к подбору транзисторов VT1 — VT3 с требуемым напряжением стабилизации.
При изменении напряжения питания приёмника от 6,5 до 9В потребляемый преобразователем ток увеличивается с 0,8 до 2,2мА, а выходное напряжение — не более чем на 8…10мВ.
При необходимости выходное напряжение преобразователя можно повысить, увеличив число звеньев умножителя напряжения и число транзисторов в стабилизаторе».

В последнее время для преобразования напряжения всё чаще применяют импульсные преобразователи с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.
Как это работает?


Рис.4

На рисунке Рис.4 (слева) изображён импульсный повышающий преобразователь напряжения, способный повышать выходное напряжение от напряжения источника питания до величины в десятки раз превышающей его.

При замыкании ключа, выполненного на транзисторе Т, через цепь: источник питания — индуктивность — замкнутый ключ начинает протекать ток. При этом, в связи с явлением самоиндукции, ток через индуктивность не может измениться моментально, так как в это время идёт постепенный запас энергии (ЭДС) в магнитном поле катушки.

При размыкании ключа — ток начинает течь по другому контуру: источник питания-индуктивность-диод-нагрузка. Поскольку источник питания и катушка в этой цепи соединены последовательно, то их ЭДС складываются. Таким образом происходит повышение напряжения.

Величина выходного напряжения подобных преобразователей малопредсказуема и зависит от нескольких факторов: сопротивления нагрузки, добротности катушки, и энергии, которая успела запастись в ней за время замыкания ключа. Именно поэтому напряжение в цепи без нагрузки может достигать значительных величин, порой приводящих к пробою ключевого транзистора.

Так как же регулировать напряжение на выходе таких преобразователей?
Очень просто — запасать в дросселе ровно столько энергии, сколько необходимо для того, чтобы создать необходимое напряжение на нагрузке. Производится это посредством регулировки длительности импульсов открывающих транзистор (временем в течении которого открыт транзистор).

Уровень выходного напряжения преобразователя описывается формулой Uвых = K×Uвх/(1-D), где
D — это величина, обратная скважности, и равная отношению периода времени, когда ключ открыт, к общему периоду импульсного сигнала, управляющего ключевым транзистором, а
К — коэффициент, прямо пропорциональный сопротивлению нагрузки и обратно пропорциональный сопротивлению открытого ключа, а также сопротивлению потерь катушки индуктивности.
У данного типа преобразователей полярность выходного напряжения, совпадает с полярностью входного.

На рисунке Рис.4 (справа) приведена упрощённая схема инвертирующего преобразователя напряжения, имеющего полезное свойство — работать как в режиме понижения напряжения, так и в режиме повышения.
Полярность его выходного напряжения противоположна полярности входного.

Так же как и в предыдущем случае, во время замыкания ключа Т происходит процесс накопления энергии катушкой индуктивности. Диод Д препятствует попаданию напряжению от источника питания в нагрузку.
Когда ключ закрывается, энергия индуктивности начинает перетекать в нагрузку. При этом ЭДС самоиндукции, направлена таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т. е. на верхнем конце обмотки катушки формируется отрицательный потенциал, на противоположном конце — положительный.

Уровень выходного напряжения равен: Uвых = K×Uвх×D/(1-D).

С теорией завязываем, резко переходим к схемам электрическим принципиальным повышающих преобразователей напряжения с индуктивными накопителями на борту.


Рис.5

На Рис.5 приведена очень простая и красивая схема преобразователя напряжения 1,5 в 15 вольт, содержащая всего 2 транзистора, выполняющих как функцию генератора сигнала, управляющего ключевым транзистором, так и самого ключевого транзистора.
Вот что пишет автор конструкции, приведённой в зарубежном издании.

«В качестве источника используется элемент питания напряжением 1,5 В, а на выходе схемы получается напряжение 15 В. Схема ещё хороша тем, что очень проста для повторения и не имеет дефицитных деталей.
Рассмотрим принцип работы. Итак, при замыкании тумблера SA1 на резисторе R1 возникает падение напряжения. Как следствие, через базу транзистора VT1 потечёт ток и оба транзистора (VT1, VT2) будут находится в открытом состоянии. В начальный момент времени, на коллекторе VT2 будет практически нулевое напряжение и через него и катушку L1 потечет нарастающий ток. Этот ток будет непрерывно увеличиваться пока транзистор VT2 не перейдет в режим насыщения. Следствием это будет увеличение напряжения на коллекторе транзистора VT2, что неизменно приведет к возрастанию напряжения на резисторе R2. В результате, транзистор VT1 закроется, после чего закроется и второй транзистор VT2.
После того, как ток прекратит движение через катушку L1, на коллекторе транзистора VT2 образуется большое положительного напряжения, которое двигаясь через диод Шоттки VD1, будет заряжать конденсатор C1. Стабилитрон VD2 в схеме преобразователя напряжения играет роль ограничителя зарядного напряжения на конденсаторе C1 и поддерживает его на уровне 15 В.
После того, как магнитное поле катушки L1 исчезает, напряжение на транзистора VT2 падает до уровня источника питания, т. е. до 1,5 Вольт. После чего оба транзистора переходят в открытое состояние, а через катушку L1 снова потечет нарастающий ток.
Частота работы устройства около 10 кГц. При исправных деталях и правильном монтаже, простой преобразователь напряжения начинает работать сразу. Допускается замена деталей очень близких по характеристикам».

Много разнообразных преобразователей напряжения реализуется на базе интегрального таймера NE555.


Рис.6

Схема одного из вариантов такого преобразователя приведена на Рис.6. Для получения высоковольтных импульсов он использует накопительный дроссель.
«На таймере DA1 собран генератор импульсов с частотой повторения около 40 кГц (она определяется сопротивлением резисторов R1, R2 и емкостью конденсатора С1). Эти импульсы поступают на транзистор VT1, работающий в режиме переключения. Когда он открыт, в катушке индуктивности L1 накапливается энергия за счет протекающего через VTI тока. Когда транзистор закрывается, на катушке L1 возникает импульс напряжения, амплитуда которого в несколько раз превышает напряжение питания (в авторской конструкции она была около 80 В). Эти импульсы напряжения выпрямляются диодом VD1, а выпрямленное напряжение фильтруется, а затем стабилизируется стабилитроном VD2.
Транзистор VT1 желательно подобрать из числа предназначенных для использования в переключающих схемах. Он, в частности, должен иметь высокое допустимое напряжение коллектор-эмиттер (не ниже 100 В). Высокое обратное допустимое напряжение должен иметь и диод VD1.
Стабилитрон VD2 — малой мощности на требуемое выходное напряжение (в авторской конструкции — на 30 В). Таймер DA1 имеет аналог отечественного производства — КР1006ВИ1. Подробной информации о катушке индуктивности в первоисточнике нет. Отмечается лишь, что она выполнена на незамкнутом броневом магнитопроводе из материала с высокой начальной магнитной проницаемостью медным проводом диаметром 0,1 мм.
При налаживании конструкции может возникнуть необходимость подобрать резистор R3 по наибольшему выпрямленному напряжению».


Рис.7

«Ещё одна схема очень простого преобразователя постоянного напряжения с минимумом элементов, обеспечивающего несколько миллиампер тока напряжением 400…425В при потребляемом токе 80…90 мА от источника 9 В, приведена на Рис.7.
На таймере NE555 выполнен мультивибратор на частоту 14 кГц. КПД устройства сильно зависит от добротности катушки индуктивностью 1 мГн.
Дроссель имеет индуктивность 1000мкГн. Толщина провода не столь важна, поскольку выходной ток схемы ничтожный. Такое устройство может быть пригодно для тех приборов, где нужно получить повышенное напряжение, но размеры ограничены».

Достаточно часто приходится видеть устройства преобразователей на NE555 со встроенной схемой стабилизации выходного напряжения. Однако, кто интересуется, тот знает, что импульсные преобразователи со стабилизацией гораздо лучше работают на недорогих микросхемах серии UC384x, которые представляют из себя широтно-импульсные контроллеры и специально спроектированы для работы в преобразователях постоянного напряжения. Схема такого устройства приведена на Рис.8.


Рис.8

L1 намотана на кольце из порошкового железа d=24мм и содержит 24 витка провода диаметром 1мм. Выходная частота работы микросхемы при указанных номиналах элементов работы — 75-80 кГц.

Устройство было изготовлено и довольно подробно протестировано в сравнении с аналогичным преобразователем на микросхеме NE555 уважаемым Александром Сорокиным на странице форума https://www.drive2.ru/c/470856784697885156/.
Вот что пишет автор:

«Стабилизация выходного напряжения на микросхеме UC3845 работает прекрасно во всем диапазоне нагрузок. Напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука), при 10Вт на выходе напряжение 18,94в, при 85Вт 18,8в т.е. просадка всего 0,1в и это прекрасно».

Ну и конечно не следует обходить вниманием специализированные микросхемы, представляющие собой практически готовые повышающие DC-DC преобразователи. Примером такой ИМС является TL499A (Рис.9).


Рис.9

С помощью этого импульсного источника питания можно получить напряжение от 1,5 до 15V при выходном токе до 50мА, для питания портативной аппаратуры от источника напряжением ЗV (два элемента «АА» или один литиевый элемент).
В основе схемы DC/DC конвертор на микросхеме TL499A. У микросхемы есть два входа, в данном случае используется только один — вывод 3, для подачи входного напряжения с целью его повышения.
Кстати, это напряжение не обязательно должно быть ЗV, может быть и 5V, а может быть и 1,5V (при работе от одного гальванического элемента), потому что минимальное входное напряжение микросхемы 1,1V, а максимальное 10V. При этом выходное напряжение поддерживается стабильным.
Установка и стабилизация выходного напряжения происходит при помощи компаратора (вывод 2), наблюдающего за выходным напряжением, которое поступает на него через делитель на резисторах R2 и R3. Подстроечным резистором R2 выставляется уровень выходного напряжения в диапазоне от 1,5 до 15V.

 

vpayaem.ru

СХЕМЫ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ

Преобразователи напряжения предназначены для повышения или понижения уровня выходного напряжения или изменения его полярности относительно входного с минимальными потерями.

Как правило, такие преобразователи чаще всего ориентированы на работу с индуктивной нагрузкой — накопителем энергии. При периодическом процессе накопления/сброса накопленной энергии и реализации определенных схемотехнических решений можно целенаправленно менять уровень и знак выходного напряжения.

Преобразователи напряжения на основе специализированных микросхем были подробно рассмотрены в моей предыдущей монографии

[28.1]. В этой связи рассмотрим ниже не включенные в то издание схемные решения.

Рис. 28.7. Схема понижающего преобразователя напряжения на микросхеме LM723

Микросхемы серии LM723 можно использовать в качестве понижающих преобразователей напряжения [28.2]. Варианты таких схем для получения выходного пониженного напряжения положительной и отрицательной относительно общего провода полярности приведены на рис. 28.1 и рис. 28.2.

Большинство микросхем, предназначенных для преобразования напряжения, могут работать только от источников положительного напряжения. Нетрадиционное включение микросхемы преобразователя напряжения МАХ761 позволило использовать ее в схеме, питаемой источником отрицательного напряжения, представленной на рис. 28.3 [28.3].

Рис. 28.2. Схема понижающего преобразователя напряжения отрицательной полярности на микросхеме LM723

Рис. 28.3. Схема включения микросхемы преобразователя напряжения МАХ761 при питании от источника отрицательного напряжения

КПД преобразователя достигает 86 % при токе нагрузки до 0,4 А. В качестве VD1 использован «сверхбыстрый» диод Шоттки (General Semiconductor).

Микросхема КР1446ПН1Е (прототип — микросхема МАХ756) представляет собой импульсный повышающий преобразователь напряжения с КПД до 80 %. Представлена на рис. 28.4 и рис. 28.5 [28.4]. Входное напряжение 0,9—5,0 В; выходное — либо 3,3 В, либо 5,0 В по выбору пользователя при токе нагрузки до 100 мА.

Типовая схема преобразователя напряжения на микросхеме КР1446ПН1Е приведена на рис. 28.5. Выбор выходного напряжения производится подключением вывода 2 микросхемы к общему проводу (ивых = 3,3 В) или к выводу 6 (UBbIX = 5,0 В). Дроссель L1 должен иметь высокую добротность и намотан проводом диаметром не менее 0,5 мм на штыревом сердечнике. Он должен быть присоединен к микросхеме проводом минимальной длины. В качестве диода VD1 использован в целях повышения КПД диод Шоттки.

Преобразователь напряжения на микросхеме TPS61042 (фирма Texas Instruments) работает при подаче на него питающего напряжения свыше 2,5 Ву рис. 28.6 [28.5, 28.6]. Выходное напряжение преобразователя 16,2 В при токе нагрузки до 30 мА. КПД преобразования при входном напряжении 2,5 В составляет 80 %, при 5 В — приближается к 86 %. Рекомендуемое значение индуктивности L1 лежит в пределах 2,2—47 мкГн.

Рис. 28.6. Схема преобразователя напряжения на микросхеме TPS61042

Рис. 28.5. Схема преобразователя постоянного напряжения на. микросхеме КР7446ПН1Е

Рис. 28.4. Структурная схема микросхемы КР1446ПН1Е

Сверхяркие светодиоды белого свечения имеют высокий КПД. Это позволяет использовать их в качестве рабочих элементов портативных источников света — фонариках. Такие светодиоды отличаются от обычных повышенным рабочим напряжением, обычно свыше 3 В, в связи с чем обычные способы питания напрямую от батареи гальванических элементов малоприемлемы. По этой причине обычно питают ультраяркие светодиоды через повышающие напряжение преобразователи напряжения. Схемы подобных преобразователей представлены на рис. 28.7 и рис. 28.8 [28.7].

Для питания ультраяркого светодиода электрического фонарика от одного гальванического элемента (аккумулятора) С. Баширов использовал преобразователь напряжения на микросхеме КР1446ПН1, включенный по типовой схеме с выходным напряжением 3,3 В, рис. 28.7 [28.8].

Преобразователь, рис. 28.8

[28.7], выполненный на микро-

Рис. 28.7. Схема преобразователя напряжения на микросхеме КР1446ПН1 для питания сверхяркого светодиода фонарика

воде от дросселя сетевого фильтра маломощного импульсного источника питания — кольце К10х4х5 из молибденового пермаллоя с магнитной проницаемостью 60. Можно использовать и дроссели на 40—199 мкГн с активным сопротивлением обмотки не свыше 0,1 Ом, рассчитанные на ток не менее 1 А, например, серии ДМ со стержневым магнитопроводом.

схеме МАХ756, работает при снижении напряжения питания до 0,4 В. Предельный ток нагрузки — до 200 мА (для четырех светодиодов L-53PWC, использованных в схеме, — ПОмА). Максимальный КПД преобразователя — 87 %.

Дроссель преобразователя содержит 35 витков провода ПЭВ-2 0,28, намотанных на магнитопро-

Современные сверхяркие светодиоды белого свечения требуют для своего питания напряжения не ниже 3,5 В. На таких светодиодах могут быть изготовлены миниатюрные высокоэффективные фонарики. Если использовать для их питания пару портативных «пуговичных» литиевых батарей, например, CR2025 или CR2032, рассчитанных на напряжение 3 В и гасить избыточное напряжение резистором, то КПД использования источника питания едва превысит 58 %.

Микросхема широтно-импульсного модулятора BTS629. Решить проблему преобразования напряжения с высоким КПД можно при применении специализированной микросхемы широтно-импульсного модулятора фирмы Siemens — DAI BTS629 (рис. 28.9) [28.9]. Яркость свечения светодиода можно плавно регулировать потенциометром R1, изменяя ширину импульса.

Рис. 28.8. Преобразователь напряжения на микросхеме МАХ756 для питания светодиодов карманного фонарика

Рис. 28.9. Схема миниатюрного светодиодного фонарика с КПД преобразования энергии батареи до 90 %

При использовании элементов CR2025 емкостью 170 мА-ч, карманный фонарик будет непрерывно работать до 15 ч, для CR2032 (230 мА-ч) — 21ч.

Линейка преобразователей серии ВР504х. Большинство портативных радиоэлектронных устройств получает питание от сети. В этой связи особо актуальна проблема создания портативных высокоэффективных преобразователей сетевого напряжения в постоянное напряжение низкого уровня при высоком КПД. Для решения этой задачи фирма Rhom создала линейку преобразователей серии ВР504х, рис. 28.10—28.14, табл. 28.1 [28.10].

Очевидный недостаток применения подобных микросхем в том, что выход источника питания не изолирован от питающей сети, что может привести к поражению потребителя электрическим током. В этой связи при использовании подобных преобразователей следует предпринимать меры по исключению возможного контакта тела человека с токонесущими конструкциями устройства.

Характеристики микросхем преобразователей напряжения серии ВР504х, ВР5085 Таблица 28.7

Напряжение сети (входное напряжение преобразователей) может варьироваться в пределах 226—390 В (типовое значение 282 В) при частоте 50 (60) Гц.

Рис. 28.7 0. Структурная схема микросхемы ВР504 7А

Типовые схемы включения микросхем серии ВР504х приведены на рис. 28.11 и 28.13 [28.10]. В качестве диодов выпрямителя рекомендуется использовать диоды, рассчитанные на обратное напряжение не ниже 700— 800 В при среднем выпрямленном токе не менее 0,5 А и пиковом токе до 20 А.

Конденсатор С1 может быть емкостью

Рис. 28. П. Схема бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5041А

3.3—  10 мкФ и рассчитан на напряжение 450 В. Конденсатор фильтра СЗ может иметь емкость 100—470 мкФ. Резистор фильтра R1 должен быть сопротивлением 10—22 Ом мощностью 0,25 Вт. Конденсатор С2 — пленочный, на напряжение не ниже 400 В. Он должен быть размещен в непосредственной близости от вывода входа микросхемы.

Микросхемы серии ВР5042, ВР5047, ВР5048, схемы которых представлены на рис. 28.12 и рис. 28.13, используют внешнюю катушку индуктивности. Конденсатор С1 имеет емкость

3.3—  22 мкФ и рассчитан на напряжение 450 В. Конденсатор фильтра СЗ может иметь емкость 100—470 мкФ. Резистор фильтра R1 должен быть сопротивлением

10—22 Ом мощностью 0,25 Вт. Конденсатор С2 — пленочный, емкостью 0,1—0,22 мкФ на напряжение не ниже 400 В. Для защиты микросхемы от повреждения параллельно клеммам питающей сети рекомендуется установить варистор, а в разрыв провода, соединяющего вход микросхемы — плавкий или многоразовый предохранитель FU1. Внешняя катушка индуктивности должна выдерживать ток не менее 0,4 А. Индуктивность этой катушки при использовании микросхем ВР5048, ВР5048—15, ВР5042—15, составляет 1 мГн для ВР5048—24, ВР5047А24 — 1,5 мГн.

Особо стоит выделить микросхему ВР5046 (рис. 28.14), которая позволяет в отличие от ранее рассмотренных микросхем получить выходное

напряжение иной полярности. Дроссель L1 имеет индуктивность 0,47 мГн для микросхемы ВР5046-5 и 1,5 мГн для микросхемы ВР5046 и рассчитан на ток не менее 0,57 и 0,3 А, соответственно.

Микросхема ВР5085-15 отличается от микросхем серии ВР504х цоколевкой, хотя и выполнена в корпусе SIP16. Типовая схема ее включения показана на рис. 28.15 [28.10].

С выхода преобразователя можно снимать два напряжения: 5 Б и 15 В при максимальном токе нагрузки 350 мА и 80 мА, соответственно. Конденсаторы фильтра СЗ и С4 могут иметь емкость 220—1000 мкФ. Рекомендуемое значение емкости конденсатора С1 33—820 мкФ на напряжение 450 В.

Дроссель L1 имеет индуктивность 1 мГн и рассчитан на ток не менее 0,6 А.

Рис. 28.14. Схема бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5046

Рис. 28.15. Схема бестрансформаторного преобразователя сетевого напряжения с выходными напряжениями 5 и 15 В на микросхеме ВР5085-15

Рис. 28.16. Схема источника питания на микросхеме SR036 (SR037) без гальванической развязки от питающей сети

Преобразователь напряжения на микросхеме SR036 (SR037), рис. 28.16, производимой фирмой Supertex, позволяет получить на выходах стабилизированное напряжение 3,3 В (или 5,5 В для микросхемы SR037), и 18 Б, соответственно, при токе нагрузки по каждому из каналов до 30 мА [28.11,28.12].

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

nauchebe.net

Преобразователи напряжения на специализированных микросхемах

Источники питания

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения, используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

 

На рис. 4.17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 4.17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 B и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мB.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12×8×3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части. В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 4.18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при Uвx=15 В. Размах пульсаций напряжения на конденсаторах С3 и С4 — 50 мВ.

Дроссель L1 индуктивностью 220 мкГн намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке

Рис. 4.18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5

Рис. 4.19.Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5

был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5 [4.12]. Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при Uвx=5 В; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12×8×3

М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7.

Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГн.

Диод VD1 во всех схемах (рис. 4.17 — 4.19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 4.20 показана возможность преобразования напряжения низкого уровня (4,5.. .5 В) в двухполярное выходное напряжение 12 (или 15 В) при токе нагрузки до 130 (или 100 мА) [4.13].

Рис. 4.20. Схема преобразователя напряжения на микросхеме МАХ743

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 4.20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0…4,5 В) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б [4.14]. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.

Рис. 4.21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В

Схема преобразователя, показанная на рис. 4.21, содержит незначительное количество внешних (навесных) деталей. Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц. Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 4.21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В, соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5 В и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 В и ниже).

Дроссель L1 выполняют на кольце К10×6×4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГн. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм. Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГн.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня вьюокочастотных помех), VD1 — диод Шотки (1N5818, 1N5819, SR106, SR160 и др.).

Далее

К началу темы


radiopolyus.ru

Микросхемы импульсных преобразователей ON Semi с широким диапазоном входных напряжений

Для бортовых аккумуляторных систем питания характерны броски напряжения при включении и выключении индуктивных нагрузок (стартер, электроприводы, вентилятор, кондиционер). Преобразователи напряжения, используемые в бортовых вторичных источниках питания, должны обеспечивать высокий уровень допустимого входного напряжения для устойчивости и надежности цепей вторичного электропитания.

Характерной особенностью приложений автомобильного сектора является также расширенный температурный рабочий режим –40…125°С. Специально для этого сектора разработаны преобразователи ON Semi, имеющие префикс NCV.

В качестве базового режима в преобразователях напряжения данного класса в основном используется режим понижения напряжения. Однако может быть востребован и комбинированный режим с повышением и понижением входного напряжения или с инверсией полярности входного напряжения.

В таблице 1 приведены характеристики микросхем импульсных преобразователей напряжения, имеющие широкий диапазон входных напряжений ON Semi (данные на конец 2009 г.).

Таблица 1. Основные параметры импульсных преобразователей напряжения с широким входным напряжением до 40 В

Тип

Iвых, A

Частота, кГц, способ упр.

Описание

Vвых, В

Корпуса

MC34063A, MC33063A

1,5

До 100

Понижающий/повышающий/инвертирующий преобразователь напряжения

1,25…40

SOIC-8, PDIP-8

DFN8

NCP3063, NCP3063B,

NCV3063

150

NCP3163, NCV3163

3,4

50…300

DFN18, SOIC-16W

MC34163, MC33163

50

SO-16WB, PDIP-16

MC34166, MC33166

3

72

Понижающий преобразователь напряжения

1,5…40

TO-220,

D2PAK

MC34167, MC33167

5

5,0…40

LM2574, NCV2574

0,5

52

3,3; 5; 12; 15; Adj.

SO-16 WB, PDIP-8

LM2575, CV2575

1

Понижающий/повышающий преобразователь
напряжения

TO-220,

D2PAK

LM2576

3

Понижающий преобразователь напряжения

LM2594

0,5

150

Adj.

1,23…3

SOIC-8, PDIP-8

LM2595

1

TO-220, D2PAK

LM2596

3

Преобразователи нового поколения с архитектурой управления V2

NCP1546, NCP1547

1,5

170 V2

Понижающий преобразователь напряжения

Adj.

SOIC-8, DFN18

340 V2

SOIC-8, DFN18

SOIC-8W

NCV8842, NCV8843

170 V2

Понижающий преобразователь напряжения
с синхронным режимом

340 V2

CS51411, NCV51411

260 V2

SOIC-8,

DFN18

CS51412

Понижающий преобразователь напряжения
c внешним смещением

CS51413

520 V2

Понижающий преобразователь напряжения
с синхронным режимом

CS51414

Понижающий преобразователь напряжения
c внешним смещением

Все эти линейки преобразователей имеют встроенный мощный выходной ключ (составной биполярный транзистор) и требуют минимальное число дополнительных компонентов. Основными параметрами являются диапазон выходного напряжения и выходной ток, а также диапазон выходных токов.

В представленных импульсных преобразователях напряжения используются различные типы методов регулирования напряжения, разные частоты преобразования, эффективность преобразования.

Широкая номенклатура микросхем с диапазоном выходных токов 0,5…5 А обеспечивает выбор требуемого преобразователя, соответствующего заданному уровню выходных токов и напряжений и работающего в коммерческом или расширенном температурных диапазонах.

Фирма ON Semi использует различные методы индексации микросхем, отличающихся температурным диапазоном. В ранних разработках для указания температурного диапазона использовалась дополнительная цифра в номере микросхемы (3 или 4). В других случаях для ИС автомобильного сектора с широким температурным диапазоном — префикс NCV. Например, микросхемы МС3416х отличаются от МС3316х только температурным диапазоном.

В номенклатуре преобразователей напряжений ON Semi можно выделить несколько линеек микросхем, которые имеют одинаковые схемы и цоколевки, но отличаются выходным током, частотой преобразования или температурным диапазоном:

– MC34166, MC33166, MC34163, MC33163;

– NCP3063, NCP3163, NCV3163;

– MC34167, MC33167;

– LM2574, LM2575, LM2576;

– LM2594, LM2595, LM2596;

– NCP1546, NCP1547, NCV8842 ,NCV8843;

– CS51411, CS51412, CS51413, CS51414.

По большей части, их структуры одинаковы или очень похожи. Некоторые типы являются улучшенными модификациями предыдущей серии и полностью совместимы с ними по цоколевке, что позволяет рекомендовать их использование вместо устаревшего аналога.

Рассмотрим некоторые особенности микросхем этих серий, знание которых позволит сделать правильный выбор преобразователя напряжения. Иерархия рассмотрения линеек преобразователей учитывает эволюцию архитектуры и развитие модификации.

Линейка преобразователей напряжения MC34063, MC33063, NCV33063A

Это базовая схема преобразователя, разработанная ON Semi довольно давно и используемая по сей день (см. рис. 1). Достоинство преобразователя — очень простая и дешевая микросхема. Для многих приложений эта схема обеспечивает удовлетворительные параметры.

Рис. 1. Структура микросхем преобразователей напряжения MC34063A, MC33063A, NCV33063A

Частота собственных колебаний генератора задается емкостью конденсатора Timing Capacitor, частота вынужденных колебаний генератора выше и зависит от максимального тока ключа, устанавливаемого резистором ограничения тока. Поскольку скорость нарастания тока в индуктивности зависит от разности входного и выходного напряжений, частота преобразования увеличивается с ростом входного напряжения. Когда напряжение на выходе обратной связи становится равным опорному напряжению, компаратор через логический элемент и триггер запрещает управление выходным ключом на один или несколько периодов частоты генератора. Таким образом, при управлении стабилизатор работает в режиме генерации пакетов импульсов. КПД преобразователя не превышает 70%. Основные потери происходят за счет падения напряжения на составном транзисторе и на ограничивающем ток резисторе.

Основной недостаток структуры — отсутствие защиты от перегрева и ограничения тока в цикле регулирования напряжения. Рабочий температурный диапазон микросхем MC33063A и NCV33063A составляет −40…125°С, а у МС34063А — 0…70°С.

Серия преобразователей NCP3063, NCV3063

Микросхема NCP3063, обновленная версия МС34063, имеет более совершенную схему ограничения максимального тока ключа, работающего только в переходных и аварийных режимах, и дополнена температурной защитой (см. рис. 2).

Рис. 2. Структура преобразователя серии NCP3063, NCP3063B, NCV3063

Схема температурной защиты принудительно переводит мощные выходные каскады в выключенное состояние при превышении температуры кристалла сверх допустимой, что обеспечивает повышение надежности преобразователя. Частота преобразования повышена до 150 кГц, что позволяет увеличить его эффективность. Серия полностью совместима с MC34063A, MC33063A, NCV33063A по цоколевке корпусов и рекомендуется в качестве замены.

Рабочий температурный диапазон микросхем NCP3063 — 0…70°С, а у NCP3063B, NCV3063 он составляет −40…125°С.

Преобразователи MC34166, MC34167, MC33166, MC33167

Мощные преобразователи напряжений серии МС34166, МС34167, МС33166, МС33167 имеют одинаковую структурную схему (см. рис. 3) и обеспечивают выходной ток 3…5 А. Преобразователи работают на фиксированной частоте 72 кГц. Диапазон входных напряжений: 7,5…40 В.

Микросхемы серии отличаются рабочими температурными диапазонами: у MC34167, МС34166 — 0…70°С, а у MC33167, МС33166 он составляет −40…85°С. Уровень выходного тока у МС34166, МС33166 — 3 А, а у MC34167, MC33167 — 5 А.

Схема ограничения тока действует в каждом цикле, реализована защита от перенапряжения и защита от перегрева кристалла. Особенность микросхем — низкое потребление в режиме stand-by, всего 36 мкА. Микросхемы поставляются в корпусах ТО-220 и DPAK.

Рис. 3. Структурная схема MC34167, MC33167

Серия микросхем MC34163, MC33163, NCP3163, NCV3163

Преобразователи данной серии обеспечивают повышенный выходной ток 3,4 А, а также имеют дополнительные функции, улучшающие надежность. Одной из таких функций является наличие сигнала LVI индикации низкого напряжения на входе, который предназначен для подключения непосредственно к микроконтроллеру.

Версии MC34163, MC33163 были разработаны ранее (см. рис. 4). Микросхемы NCP3163, NCV3163 (см. рис. 5) являются улучшенной модификацией MC34163, MC33163 и полностью совместимы по выводам с MC34163, MC33163. Рабочий температурный диапазон микросхемы МС34163 — 0…70°С; у МС33163 он составляет −40…125°С.

Рис. 4. Структура MC34163, MC33163

Рис. 5. Структура NCP3163, NCV3163

Модифицированные микросхемы NCP3163, NCV3163 имеют дополнительные цепи защиты входов и выходов, а также улучшенную схему защиты от перегрева и превышения порогового значения тока. Рабочий температурный диапазон: NCP3163 — 0…70°С, а у NVC3163 он составляет −40…125°С.

Микросхемы серии LM2594, LM2595, LM2596

Все микросхемы этой серии имеют одинаковую структуру (см. рис. 6) и цоколевку корпусов. Отличие заключается только в параметрах выходных транзисторов, обеспечивающих разные выходные токи: 0,5; 1 и 3 А. Частота задающего генератора — 150 кГц.

Микросхемы имеют схему защиты от перегрева и схему ограничения тока в фазах регулирования.

Рис. 6. Структура LM2594, LM2595, LM2596

Преобразователи LM2574, LM2575, LM2576

Структура микросхем такая же (см. рис. 7), как у серии LM2594/LM2595/LM2596. Особенность серии — фиксированные выходные напряжения 3,3; 5,0; 12; 15, а также наличие модификации Adj. с регулируемым выходным напряжением. Частота внутреннего генератора также отличается — 52 кГц. Несмотря на одинаковую структуру, серия имеет отличную от серии LM 2594, LM2595, LM2596 цоколевку корпусов.

Ряд фиксированных значений напряжений задается встроенным резистивным делителем R2/R1. Микросхемы имеют различные выходные мощные транзисторы, которые обеспечивают ток 0,5…3 А.

Рис. 7. Структура и схема включения LM2574, LM2575, LM2576

Преобразователи NCP1546, NCP1547, NCV8842, NCV8843

Это преобразователи нового поколения, в которых используются более совершенные схемы управления стабилизацией выходного напряжения. Архитектура V2 обеспечивает более эффективную обратную связь как по току, так и по напряжению, отслеживая вариации входного напряжения и тока в нагрузке. Данный тип рекомендуется использовать для питания устройств с импульсными режимами потребления в нагрузке. Характерный пример — питание материнской платы в компьютерах.

Микросхемы обеспечивают лучший уровень стабилизации и лучшую надежность за счет совершенствования механизмов защиты от перегрева и короткого замыкания на выходе. Микросхемы этой серии имеют одинаковую структуру (см. рис. 8). Отличие заключается лишь в использовании разной частоты преобразования: 170 кГц для NCP1546 и 340 кГц для NCP1547. Для понижения уровня ЭМИ системы преобразователей микросхемы обеспечивают режим синхронной работы нескольких преобразователей. Имеются схемы защиты от перегрева силовых цепей, а также режим понижения частоты преобразования в 4 раза при коротком замыкании в нагрузке.

Рис. 8. Структура NCP1546/1547 с технологией регулирования V2

Особенностью микросхемы является очень низкий ток 1 мкА в дежурном режиме (SHDNB). Наличие режима мягкого запуска преобразователя снижает опасные перегрузки при его включении и уменьшает уровень ЭМИ.

Исполнения для автомобильных приложений имеют не только дополнительный префикс NCV, но и другие номера — NCV8842, NCV8843. По сути, кристаллы в микросхемах имеют такую же структуру.

Преобразователи CS51411, CS51412, CS51413, CS51414

Серия микросхем преобразователей понижающего типа разработана компанией Catalyst Semiconductor, которая вошла в состав ON Semi в августе 2009 г. По основным параметрам эта серия близка к NCP1546, NCP1547. Схемотехника этой серии ИС также обеспечивает превосходную стабилизацию выходного напряжения и отличные динамические характеристики благодаря запатентованной технологии V2 управления по цепи обратной связи и современным решениям для силовой части преобразователей (см. рис. 9).

Рис. 9. Схема включения микросхем преобразователей CS51411/13

Микросхемы преобразователей напряжения обеспечивают выходной ток 1,5 А. Диапазон входных напряжений 4,5…40 В. Микросхемы работают на фиксированной частоте преобразования 260 кГц (CS51411/12) или 520 кГц (CS51413/14).

Микросхемы CS51411 и CS51413 обеспечивают режим синхронной работы нескольких преобразователей, что позволяет снизить уровень ЭМИ за счет отсутствия биений близких частот. Модификации CS51412 и CS51414 имеют дополнительную опцию питания логики преобразователя от источника внешнего напряжения 3,3…6,0 В, что в случае высокого входного напряжения и низких выходных токов дает выигрыш в эффективности преобразования энергии. В структуре имеются схемы защиты от перегрева кристалла, ограничения тока в каждом цикле регулирования, а также схемы уменьшения тока при коротких замыканиях в нагрузке за счет уменьшения в четыре раза частоты генератора.

Микросхемы CS51411/13 и CS51412/14 отличаются цоколевкой и назначением выводов. У микросхем CS51411/13 имеется вывод SYNC для синхронного режима, а микросхемы CS51412/14 имеют вывод BIAS для внешней подачи внешнего напряжения питания логики преобразователя.

Микросхемы CS51411 и CS51413 полностью совместимы с ИС Linear Technologies LT1375, а CS51412/14 полностью совместимы с микросхемами LT1376.

Литература

1. Михаил Пушкарев. Микросхемы импульсных понижающих стабилизаторов. Эволюция схемотехники//Компоненты и технологии. №2. 2008.

2. Datasheet. LM2574, NCV2574 0.5 A, Adjustable Output Voltage, Step-Down Switching Regulator. ON Semi.

3. Datasheet. NCP1546 1.5 A, 170 kHz, Buck Regulator with Synchronization Capability. ON Semi.

4. Datasheet. MC34063A, MC33063A, NCV33063A 1.5 A, Step-Up/Down/Inverting Switching Regulators. ON Semi.

www.russianelectronics.ru

Схемы простых преобразователей напряжения | Мастер Винтик. Всё своими руками!

Добавил: Chip,Дата: 01 Июн 2016

Ранее мы подробно рассматривали применение микросхемы NE555. Сейчас рассмотрим несколько простых схем преобразователей напряжения на микросхеме NE555. Схемы преобразования напряжения могут быть полезны для питания малоточных схем, например варикапов в схемах приёмников, металлоискателей… или микросхем, для которых основного питания схемы недостаточно.

Схема удвоения напряжения

Напряжение превышает предложение может быть создано «заряд—насос» схемы создан с 555, диоды и конденсаторы, как показано на следующей схеме. Выход будет поставлять около 50мА.

Для увеличения выходного тока в схеме ниже добавлены транзисторы BC107 и BC117 на выходе микросхемы.

Умножители напряжения

Схема утроения напряжения

Напряжение почти в 3 раза превышает напряжения питания (с 12В до 31В ) Выходной ток будет составлять около 50 мА.

На выходе (выв.3) генерируется сигнал с амплитудой от 0,5В до 11в.

Описание работы схемы умножения

Когда на выходе низкий уровень (0,5В), конденсатор «а» заряжает через диод «а» около 11в.

Когда на выходе высокий уровень (11В), конденсатор «а» заряжен (около 11в) через него, добавляется плюс с выхода. 22в подаётся на положительный вывод конденсатора «а» проходит через диод «б» и заряжает конденсатор «б» с 21в — 12В = 9В. Это создает напряжение 21 в на аноде диода «с».

Когда с выв. 3 идет низкий уровень, конденсаторы «b» и «с» будут заряжаться через диоды «b» и «с». Конденсатор «а» заряжается через диод «а» и конденсатор «с» заряжается через диод «с».

Когда с выв. 3 идет высокий уровень, то к 9В через конденсатор «с» будет добавлено 22в для зарядки конденсатора «d» до 31в.

Схема учетверения напряжения

Схема работает аналогично предыдущей, только добавлено ещё одно плечо (два диода и два конденсатора на выходе схемы).

Таким образом напряжение на выходе составляет 41 В, с током 50мА.

Использовался материал сайта:talkingelectronics.com




П О П У Л Я Р Н О Е:

  • Резервный источник питания на 5В
  • Подробнее…

  • Зарядное устройство для аккумуляторных батарей.

  • Электронное зарядное устройство с сигнализатором уров­ня зарядки аккумуляторных батарей обеспечивает визуальный контроль за состоянием процесса зарядки в ее крайних состояни­ях, что позволяет продлить срок эксплуатации аккумуляторов. За­рядное устройство подает световой сигнал как при напряжении на аккумуляторе ниже установленного, так и при напряжении выше предельно допустимого. Работает зарядное устройство от сети пе­ременного тока напряжением 220 или 127 В частотой 50 Гц в усло­виях умеренно холодного климата при температуре окружающей среды от +5 до +35°С, относительной влажности воздуха до 85 % при температуре +22°С и пониженном атмосферном давлении до 200 мм рт.ст.

      Подробнее…

  • Самодельный блок питания на LM2576
  • Блок питания на LM2576-ADJ своими руками

    Ранее мы размещали схемы зарядных устройств на 6В и на 12В, собранных на микросхеме LM317. Сегодня предлагаем вариант лабораторного блока питания В. Болдырева на микросхеме LM2576-ADJ. Блок питания обеспечивает плавную регулировку напряжения от 1,2 до 34 вольт при токе нагрузки до 3А.

    Подробнее…


— н а в и г а т о р —


Популярность: 3 613 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем)

Здесь будут рассмотрены бестрансформаторные преобразователи напряжения, как правило, состоящие из генератора прямоугольных импульсов и умножителя напряжения.

Обычно таким образом удается повысить без заметных потерь напряжение не более чем в несколько раз, а также получить на выходе преобразователя напряжение другого знака. Ток нагрузки подобных преобразователей крайне невелик — обычно единицы, реже десятки мА.

Задающий генератор

Задающий генератор бестрансформаторных может быть выполнен по типовой схеме, базовый элемент 1 которой (рис. 1) выполнен на основе симметричного мультивибратора.

В качестве примера элементы блока могут иметь следующие параметры: R1=R4=1 кОм; R2=R3=10 кОм С1=С2=0,01 мкФ. Транзисторы — маломощные, например, КТ315. Для повышения мощности выходного сигнала использован типовой блок усилителя 2.

 

 

Рис. 1. Схемы базовых элементов бестрансформаторных преобразователей: 1 — задающий генератор; 2 — типовой блок усилителя.

Бестрансформаторный преобразователь напряжения

Бестрансформаторный преобразователь напряжения состоит из двух типовых элементов (рис. 2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряжения (рис. 2).

Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное напряжение 22В при токе нагрузки до 100 мА (параметры элементов: R1=R4=390 Ом. R2- R3=5,6 кОм, C1=C2=0,47 мкФ). В блоке 1 использованы транзисторы КТ603А — б; в блоке 2 — ГТ402В(Г) и ГТ404В(Г).

 

Рис. 2. Схема бестрансформаторного преобразователя с удвоением напряжения.

Рис. 3. Схемы преобразователей напряжения на основе типового блока.

Преобразователь напряжения построенный на основе типового блока, описанного выше (рис. 1), можно применить для получения выходных напряжений разчой полярности так, как это показано на рис. 3.

Для первого варианта на выходе формируются напряжения +10 В и -10 В; для второго — +20 В и -10 В при питании устройства от источника напряжением 12В.

Схема преобразователя для питания тиратронов 90В

Для питания тиратронов напряжением примерно 90 В применена схема преобразователя напряжения по рис. 4 с задающим генератором 1 и параметрами элементов: R1=R4=-1 кОм, R2=R3=10 кОм, С1 =С2=0,01 мкФ.

Здесь могут быть использованы широко распространенные маломощные транзисторы. Умножитель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

Рис. 4. Схема преобразователя напряжения с многокаскадным умножителем.

Инвертор полярности напряжения из (+) в (-)

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типового узла (рис. 1). На выходе устройства (рис. 5) образуется напряжение, противоположное по знаку напряжению питания.

Рис. 5. Схема инвертора напряжения.

По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (потерями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения

Преобразователь (удвоитель) напряжения (рис. 6) содержит задающий генератор 1 (1 на рис. 1.1), два усилителя 2 (2 на рис. 1.1) и выпрямитель по мостовой схеме (VD1 — VD4).

Рис. 6. Схема удвоителя напряжения повышенной мощности.

Блок 1: R1 =R4=100 Ом; R2=R3=10 кОм; C1=C2=0,015 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразования, поэтому одновременно с ее ростом уменьшаются емкости конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряжение 12В (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 В; при 50 Ом — до 10 В; а при 10 Ом — до 7 В.

Двуполярный преобразователь со средней точкой

Преобразователь напряжения (рис. 7) позволяет получить на выходе два разнополярных напряжения с общей средней точкой. Такие напряжения часто используют для питания операционных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его величины изменяются одновременно.

Рис. 7. Схема преобразователя для получения разнополярных выходных напряжений.

Транзистор VT1 — КТ315, диоды VD1 и VD2—Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя — 10 Ом. В режиме холостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличении тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 В.

Преобразователи-инверторы с задающим генератором на КМОП-элементах

Задающий генератор преобразователя напряжения (рис. 8) выполнен на двух КМОП-элементах, К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное напряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов — при низковольтном питании) меньше входного.

Рис. 8. Схема преобразователя напряжения-инвертора с задающим генератором на КМОП-элементах.

Похожая схема преобразователя изображена на следующем рисунке (рис. 9). Преобразователь содержит задающий генератор на КМОП-микросхеме, каскад усиления на транзисторах VT1 и VT2, схемы удвоения выходного импульсного напряжения, конденсаторные фильтры и схему формирования искусственной средней точки на основе пары стабилитронов.

На выходе преобразователя формируются следующие напряжения: +15 б при токе нагрузки 13… 15 мА и -15 В при токе нагрузки 5 мА.

Рис. 9. Схема преобразователя напряжения для формирования разнополярных напряжений с задающим генератором на КМОП-элементах.

На рис. 10 показана схема выходного узла бестрансформаторного преобразователя напряжения.

Рис. 10. Схема выходного каскада бестрансформаторного преобразователя напряжения.

Этот узел фактически является усилителем мощности. Для управления им можно использовать генератор импульсов, работающий на частоте 10 кГц.

Без нагрузки преобразователь с таким усилителем мощности потребляет ток около 5 мА. Выходное напряжение приближается к 18 В (удвоенному напряжению питания). При токе нагрузки 120 мА выходное напряжение уменьшается до 16 б при уровне пульсаций 20 мВ. КПД устройства около 85%, выходное сопротивление — около 10 Ом.

При работе узла от задающего генератора на КМОП-элементах установка резисторов R1 и R2 не обязательна, но для ограничения выходного тока микросхемы желательно соединить ее выход с транзисторным усилителем мощности через резистор сопротивлением в несколько кОм.

Преобразователь напряжения для управления варикапами

Простая схема преобразователя напряжения для управления варикапами многократно воспроизведена в различных журналах. Преобразователь вырабатывает 20 В при питании от 9 б, и такая схема показана на рис. 11.

На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. Диоды VD1 — VD4 и конденсаторы С2 — С5 образуют умножитель напряжения, а резистор R5 и стабилитроны VD5, VD6 — параметрический стабилизатор напряжения.

Рис. 11. Схема преобразователя напряжения для варикапов.

Преобразователь напряжения на КМОП микросхеме

Рис. 12. Схема преобразователя напряжения на КМОП микросхеме.

Простой преобразователь напряжения на одной лишь КМОП-микросхеме с минимальным числом навесных элементов можно собрать по схеме на рис.12.

Основные параметры преобразователя при разных напряжениях питания и токах нагрузки приведены в таблице 1.

Таблица 1. Параметры преобразователя напряжения (рис. 12):

Uпит, В

Івых. мА

Uвых, В

10

5

17

10

10

16

10

15

14,5

15

5

27,5

15

10

26,5

15

15

25,5

Двуполярный преобразователь

Рис. 13. Схема выходного каскада формирователя двухполярного напряжения.

Для преобразования напряжения одного уровня в двухполярное выходное напряжение может быть использован преобразователь с выходным каскадом по схеме на рис. 13.

При входном напряжении преобразователя 5В на выходе получаются напряжения +8В и -8В при токе нагрузки 30 мА. КПД преобразователя составил 75%. Значение КПД и величину выходного напряжения можно увеличить за счет использования в выпрямителе-умножителе напряжения диодов Шотки. При увеличении напряжения питания до 9 В выходные напряжения возрастают до 15 В.

Приблизительный аналог транзистора 2N5447 — КТ345Б; 2N5449 — КТ340Б. В схеме можно использовать и более распространенные элементы, например, транзисторы типа КТ315, КТ361.

Схема преобразователя-инвертора на микросхеме КР1006ВИ1

Для схем преобразователей напряжения, построенных по принципу умножителей импульсного напряжения, могут быть использованы самые разнообразные генераторы сигналов прямоугольной формы.

Такие генераторы часто строят на микросхеме КР1006ВИ1 (рис. 14) . Выходной ток этой микросхемы достаточно большой (100 мА) и часто можно обойтись без каскадов дополнительного усиления.

Генератор на микросхеме DA1 (КР1006ВИ1) вырабатывает прямоугольные импульсы, частота следования которых определяется элементами R1, R2, С2. Эти импульсы с вывода 3 микросхемы подаются на умножитель напряжения.

К выходу умножителя напряжения подключен резистивный делитель R3, R4, напряжение с которого поступает на вход «сброс» (вывод 4) микросхемы DA1.

Параметры этого делителя подобраны таким образом, что, если выходное напряжение по абсолютной величине превысит входное (напряжение питания), генерация прекращается. Точное значение выходного напряжения можно регулировать подбором сопротивлений резисторов R3 и R4.

Рис. 14. Схема преобразователя-инвертора напряжения с задающим генератором на микросхеме КР1006ВИ1.

Характеристики преобразователя — инвертора напряжения (рис 14) приведены в табл. 2.

Таблица 2. Характеристики преобразователя-инвертора напряжения (рис. 14).

Uпит, В

Івых, мА

Iпотр, мА

КПД, %

6

3,5

13

27

7

6

22

28

8

11

31

35

10

18

50

36

12

28

70

40

Умощненный преобразователь-инвертор на микросхеме КР1006ВИ1

На следующем рисунке показана еще одна схема преобразователя напряжения на микросхеме КР1006ВИ1 (рис. 15). Рабочая частота задающего генератора 8 кГц.

На его выходе включен транзисторный усилитель и выпрямитель, собранный по схеме удвоения напряжения. При напряжении источника питания 12 б на выходе преобразователя получается 20 В. Потери преобразователя обусловлены падением напряжения на диодах выпрямителя-удвоителя напряжения.

Рис. 15. Схема преобразователя напряжения с микросхемой КР1006ВИ1 и усилителем мощности.

Инвертор полярности напряжения на микросхеме КР1006ВИ1

На основе этой же микросхемы (рис. 16) может быть создан инвертор напряжения. Рабочая частота преобразования — 18 кГц, скважность импульсов — 1,2.

Рис. 16. Схема формирователя напряжения отрицательной полярности.

Преобразователь напряжения-инвертор на основе ТТЛ-микросхем

Как и для других подобных устройств, выходное напряжение преобразователя существенно зависит от тока нагрузки.

ТТЛ и КМОП-микросхемы могут быть использованы для выпрямления тока. Развивая тему, автор этой идеи Д. Катберт предложил бестрансформаторный преобразователь напряжения-инвертор на основе ТТЛ-микросхем (рис. 7).

 

Рис. 17. Схема инвертора напряжения на основе двух микросхем.

Устройство содержит две микросхемы: DD1 и DD2. Первая из них работает в качестве генератора прямоугольных импульсов с частотой 7 кГц (элементы DD1.1 и DD1.2), к выходу которого подключен инвертор DD1.3 — DD1.6.

Вторая микросхема (DD2) включена необычным образом (см. схему): она выполняет функцию диодов. Все ее элементы-инверторы для увеличения нагрузочной способности преобразователя включены параллельно.

В результате такого включения на выходе устройства получается инвертированное напряжение -U, примерно равное (по абсолютной величине) напряжению питания. Напряжение питания устройства с КМОП-микросхемой 74НС04 может быть от 2 до 7 В. Примерный отечественный аналог — ТТЛ-микросхема типа К555ЛН1 (работает в более узком диапазоне питающих напряжений) или КМОП-микросхема КР1564ЛН1.

Максимальный выходной ток преобразователя достигает 10 мА. При отключенной нагрузке устройство практически не потребляет ток.

Преобразователь напряжения на микросхеме К561ЛА7

В развитие рассмотренной выше идеи использования защитных диодов КМОП-микросхем, имеющихся на входах и выходах КМОП-элементов, рассмотрим работу преобразователя напряжения, выполненного на двух микросхемах DD1 и DD2 типа К561ЛА7 (рис. 18).

На первой из них собран генератор, работающий на частоте 60 кГц. Вторая микросхема выполняет функцию мостового высокочастотного выпрямителя.

Рис. 18. Схема точного преобразователя полярности на двух микросхемах К561ЛА7.

В процессе работы преобразователя на выходе формируется напряжение отрицательной полярности, с большой точностью при высокоомной нагрузке повторяющее напряжение питания во всем диапазоне паспортных значений питающих напряжений (от 3 до 15 В).

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

www.qrz.ru

0 comments on “Микросхемы преобразователи напряжения схемы – 17 DC-DC

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *