Схемы на lm317 своими руками – Блок питания на LM317

Блок питания на LM317

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.

Сразу привожу схему:

Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке: Калькулятор онлайн
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.

Шаг 2. С резисторами разобрались, теперь дело за печатной платой. Её я делал в программе Sprint Layout, скачать можно тут: скачать плату

Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут:

рассчитать резистор
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.

В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.

Вот так примерно она будет установлена:

Далее нужно выломать переднюю часть корпуса, для закрепления панели. После чего обработать острые края напильником.

Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.

Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.

А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.

Шаг 5. Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.

Шаг 6. Далее устанавливаем переднюю панель. Её я приклеил на термоклей. В просверленные отверстия вставляем светодиод, прикручиваем переменный резистор, разъемы banana я уже установил ранее.

Остается только закрыть верхнюю крышку. Её я тоже немного приклеил на термоклей к панели. И теперь наш блок питания готов! Остается его только протестировать.

Этот блок способен выдавать максимальное напряжение в 32 В и силу тока до 2 ампер. Минимальное напряжение — 1,1 В, а максимальное 32 В.

Спасибо, всем удачи!

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Простой регулируемый блок питания на трех микросхемах LM317

Здравствуйте, сегодня я расскажу, как сделать регулируемый блок питания на базе микросхемы lm317. Схема сможет выдавать до 12 вольт и 5 ампер.

Схема блока питания



Для сборки нам понадобятся


  • Стабилизатор напряжения LM317 (3 шт.)
  • Резистор 100 Ом.
  • Потенциометр 1 кОм.
  • Конденсатор электролитический 10 мкФ.
  • Конденсатор керамический 100 нФ (2 шт.).
  • Конденсатор электролитический 2200 мкФ.
  • Диод 1N400X (1N4001, 1N4002…).
  • Радиатор для микросхем.


Сборка схемы


Собирать схему будем навесным монтажом, так как деталей немного. Сначала прикрепляем микросхемы к радиатору, так и собирать будет удобнее. Кстати, необязательно использовать три LM. Они все соединены параллельно, поэтому можно обойтись двумя или одной. Теперь все крайние левые ножки припаиваем к ножке потенциометра. К этой ножке припаиваем плюс конденсатора, минус припаиваем к другому выходу. Чтобы конденсатор не мешал, я перепаял его снизу потенциометра.

К ножке потенциометра, к которой припаяли левые ножки микросхем, также припаиваем резистор на 100 Ом. К другому концу потенциометра припаиваем средние ножки микросхем (у меня это лиловые провода).

К этой ножке резистора припаиваем диод. К другой ножке диода припаиваем все правые ножки микросхемы (у меня это белые провода). Плюс припаиваем один провод, это будет плюс входа.

Ко второму выходу потенциометра припаиваем два провода (у меня они черные). Это будет минус входа и выхода. Также припаиваем провод (у меня он красный) к резистору там, где ранее припаивали диод. Это будет плюс выхода.

Теперь осталось припаять к плюсу и минусу входа, плюсу и минусу выхода по конденсатору на 100 нФ (100 нФ = 0,1 мкФ, маркировка 104).

На вход следом припаиваем конденсатор на 2200 мкФ, плюсовая нога припаивается к плюсу входа.

На этом изготовление схемы готово.

Так как схема выдает 4,5 Ампер и до 12 Вольт, входное напряжение должно быть как минимум таким же. Потенциометром уже будем регулировать выходное напряжение. Для удобства советую поставить хотя бы вольтметр. Делать полный корпус я не буду, все, что я сделал, это прикрепил радиатор к отрезку ДВП и прикрутил потенциометр. Провода выхода я также вывел и прикрутил к ним крокодильчиков. Это вполне удобно. Далее я это прикрепил все это к столу.

sdelaysam-svoimirukami.ru

Блок питания на LM 317T — DRIVE2

Для тех, кого не пугает наличие некоторого количества знакомых букв продолжаю.

И так, пока не упрятал все в корпус по причине его отсутствия, представляю вашему вниманию очередную поделку — блок питания на LM 317Т. Выглядит конечно не по фэншую, но работает. Красоту наведу когда подходящий корпус найду.
Вот схема.

LM 317Т в ТО-220 корпусе способна работать от 1,2 до 37 В с током до 1,5 А. Думаю что для околоавтомобильных поделок напряжения вполне достаточно, впрочем, как и тока. Если нужно ток больше, то в инете есть схема на LM 338Т до 5 А.
Можно конечно купить и фабричный китайский блок питания, но цена у них «кусачая», да и самое главное-гарантия всего максимум 6 месяцев. Кто же знает чего там в красивую коробку раскосые ребята положили.
Полазив по своим амбарам и поскребя по сусекам, нашел вот такой трансформатор. Первичная обмотка на ~220 В. Две вторичных — на ~14 В с копейками и на ~4,7 В вроде. По мощности конечно не такой как хотелось, ну да ладно-при случае заменю. Сейчас задействовал только одну вторичную обмотку. С ее помощью на выходе блока снимается постоянное напряжение от 1,3 до 21,1 В.

Как обычно начертил плату. Для гурманов представлю два вида. Значок светодиода на плате показан условно, только для обозначения подключения. Полярность проверяйте при монтаже.

Вытравил ее всем известным способом.

Список использовавшихся деталей за исключением светодиода.


Готовая плата.

В качестве радиатора коммутатор от Ваз 2109.
Вот видео блока питания в сборе.


Маленький пример работы-вольтметр и светодиодная лента.

www.drive2.ru

схема блока питания мощного регулируемого

На микросборке LM317T схема блока питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания – трансформатор

Необходимо использование в качестве преобразователя напряжения понижающий трансформатор. Его можно взять от практически любой бытовой техники – магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад

Выпрямительный блок – это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому – мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев – получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто – смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления – постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их соединения подключается первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

fb.ru

cxema.org — Регулируемый стабилизатор (1,25-37V) на LM317

Регулируемый стабилизатор (1,25-37V) на LM317

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Фото готовой платы.

Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.

Печатная плата в формате lay6

С уважением, ЕГОР Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.«>Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

  • < Назад
  • Вперёд >

vip-cxema.org

Регулируемый блок питания на стабилизаторе напряжения LM317 |

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания.  Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3  до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

Рисунок №1 – Электрическая принципиальная схема регулируемого блока питания.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)
VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18  КОм (нужно подбирать под ток светодиода).
R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма  R2 + R3 = 5КОм.

R3 — 5,6 Ком.
R4 – 240 Ом.
C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФ
C3 — 10 мкФ (электролитический)
C4 —  1 мкФ (электролитический)
DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Рисунок №2 – Пример радиатора.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.
Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.
Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

 

Рисунок №3 — Плата печатная и сборочный чертёж

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Как можно подключить вольтметр и амперметр к этой схеме

  Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Окно специального калькулятора для расчёта LM317Управляющий делитель напряжения

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

bip-mip.com

0 comments on “Схемы на lm317 своими руками – Блок питания на LM317

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *