Схемы преобразователей напряжения – Схемы преобразователей

СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

   Данный автомобильный преобразователь предназначен для питания мощного УНЧ от автомобильного аккумулятора 12В. В данном случае он преобразовывает 12 вольт автомобильного аккумулятора в +- 35 вольт. Для уменьшения габаритов устройства, преобразование происходит на повышенной частоте. В преобразователе напряжения, частота равна 50 кГц. Преобразователь обеспечивает двуполярным питанием УНЧ при максимальной мощности около 200Вт. Для схемы выбрана преимущественно импортная элементная база, так как её сейчас достать проще. В качестве широтноимпульсного модулятора в схеме используется микросхема TL494. Генератор TL494 распространён во многих схемах ИБП, например можно выпаять её из блока питания АТ или АТХ. В качестве коммутирующих транзисторов были выбраны мощные полевые IRFZ44N. Для разряда емкостей затворов полевых транзисторов служат буферные транзисторы КТ961 и КТ639. 


   Принципиальная схема преобразователя напряжения 12 — 2х35 вольт для питания мощного УМЗЧ.


   Преобразователь напряжения работает следующим образом. Генератор импульсов частотой около 30-50 КГц собран на TL494, импульсы в противофазе поступают на цепи быстрого заряда и разряда емкостей затворов, которые формируют импульсы с коротким фронтом и срезом. Сформированые импульсы поступают на затворы управляющих транзисторов, стоки которых подключены к трансформатору. Параллельно его обмоткам включены схемы гашения индуктивного выброса, чтобы исключить возможность пробоя транзисторов из-за избытка напряжения. Выпрямитель ничего особенного не имеет, обычный диодный мост и ёмкостный фильтр с дросселем против помех. Блок управления на микросхеме TL494 начинает работать сразу. К применяемым деталям некритичен. На выводах 9 и 10 должны быть прямоугольные импульсы, сдвинутые по времени. 


   Преобразователь напряжения собран на печатной плате из одностороннего фольгированного стеклотекстолита. Разводка печатной платы заметно влияет на ВЧ помехи на выходе преобразователя и соответственно на выходе усилителя мощности. Разработка своей печатки требует знаний. Возможно, лучше найти готовую печатку. Про свою печатку могу сказать, что она полностью работоспособна и имеет минимум помех, хотя можно сделать лучше.


   В схеме использовались резисторы типа МЛТ — 0,125, за исключением тех, мощность которых указана на схеме, подстроечные резисторы — любые подходящие по размеру и расположению выводов, желательно чтобы они были типа А. Диоды выпрямителя устанавливаются на небольшой радиатор. Транзисторы драйвера в радиаторах не нуждаются. Мощные полевые транзисторы устанавливаются через слюдяные прокладки на большой радиатор, при необходимости добавляется куллер. Намоточные данные трансформатора и дросселей указаны на схеме.  


   Трансформатор надо мотать очень качественно, от этого зависит работа всего преобразователя. Намотку трансформатора надо делать как можно плотнее к сердечнику и распределять витки равномерно по всему кольцу. Первичная обмотка – 4 витка по всему магнитопроводу жгутом из 10 проводов диаметром 1,6 мм, после этого делим жгут пополам. Конец одной соединяется с началом другой полуобмотки. Вторичка – 16 витков жгутом из 4 проводов диаметром 1,2 мм, потом делим пополам. Провода можно взять другого диаметра и изменить количество жил, так что бы сечение осталось прежним.

   Но все эти цифры даны приблизительно, так как особой точности выходных напряжений не требуется. Ну будет у вас не +-35, а 31 вольт и что с того? Магнитопровод можно обмотать слоем лакоткани, что бы не повредить изоляцию провода во время намотки. Между обмотками тоже прокладываем слой изоляции для исключения замыканий. На выходе трансформатора должны быть трапециидальные импульсы. Дроссель сделаны на феррите от блока питания компьютера по 10 витков проводом ПЭЛ-1. Диоды выпрямителя лучше поставить с низким падением напряжения — Шоттки. 


   При настройке преобразователя первое включение проводите через 12В автомобильную лампу мощностью несколько десятков ватт, этим самым вы сбережете схему от сгорания, если в монтаже есть ошибки. Измерения выходных напряжений преобразователя нужно производить под нагрузкой. Вращением движка подстроечного резитора выставляем необходимое нам напряжение, обычно оно регулируется в пределах 20В — 40В. Материал предоставили — alpha и qwert390.

   Форум по преобразователям напряжения

   Обсудить статью СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ




radioskot.ru

Простые автогенераторные преобразователи напряжения на транзисторах

В генераторах с самовозбуждением (автогенераторах) для возбуждения электрических колебаний обычно используется положительная обратная связь. Существуют также автогенераторы на активных элементах с отрицательным динамическим сопротивлением, однако в качестве преобразователей они практически не используются.

Наиболее простая схема однокаскадного преобразователя напряжения на основе автогенератора показана на рис. 9.1. Этот вид генераторов получил название блокинг-генераторов. Фазовый сдвиг для обеспечения условия возникновения колебаний в нем обеспечивается определенным включением обмоток.

Рис. 9.1. Схема преобразователя напряжения с трансформаторной обратной связь.

Аналог транзистора 2N3055 — КТ819ГМ. Блокинг-генератор позволяет получать короткие импульсы при большой скважности. По форме эти импульсы приближаются к прямоугольным. Емкости колебательных контуров блокинг-гене-ратора, как правило, невелики и обусловлены межвитковыми емкостями и емкостью монтажа. Предельная частота генерации блокинг-генератора — сотни кГц. Недостатком этого вида генераторов является выраженная зависимость частоты генерации от изменения питающего напряжения.

Резистивный делитель в цепи базы транзистора преобразователя (рис. 9.1) предназначен для создания начального смещения. Несколько видоизмененный вариант преобразователя с трансформаторной обратной связью представлен на рис. 9.2.

Рис. 9.2. Схема основного (промежуточного) блока источника высоковольтного напряжения на основе автогенераторного преобразователя.

Автогенератор работает на частоте примерно 30 кГц. На выходе преобразователя формируется напряжение амплитудой до 1 кВ (определяется числом витков повышающей обмотки трансформатора).

Трансформатор Т1 выполнен на диэлектрическом каркасе, вставляемом в броневой сердечник Б26 из феррита М2000НМ1 (М1500НМ1). Первичная обмотка содержит 6 витков; вторичная обмотка — 20 витков провода ГІЭЛШО диаметром 0,18 мм (0,12…0,23 мм). Повышающая обмотка для достижения выходного напряжения величиной 700…800 В имеет примерно 1800 витков провода ПЭЛ диаметром 0,1 мм. Через каждые 400 витков при намотке укладывается диэлектрическая прокладка из конденсаторной бумаги, слои пропитывают конденсаторным или трансформаторным маслом. Места выводов катушки заливают парафином.

Этот преобразователь может быть использован в качестве промежуточного для питания последующих ступеней формирования высокого напряжения (например с электрическими разрядниками или тиристорами).

Следующий преобразователь напряжения (США) также выполнен на одном транзисторе (рис. 9.3). Стабилизация напряжения смещения базы осуществляется тремя последовательно включенными диодами VD1 — VD3 (прямое смещение).

Рис. 9.3. Схема преобразователя напряжения с трансформаторной обратной связью.

Коллекторный переход транзистора VT1 защищен конденсатором С2, кроме того, параллельно коллекторной обмотке трансформатора Т1 подключена цепочка из диода VD4 и стабилитрона VD5.

Генератор вырабатывает импульсы, по форме близкие к прямоугольным. Частота генерации составляет 10 кГц и определяется величиной емкости конденсатора СЗ. Аналог транзистора 2N3700 — КТ630А.

Схема двухтактного трансформаторного преобразователя напряжения показана на рис. 9.4. Аналог транзистора 2N3055 — КТ819ГМ.

Трансформатор высоковольтного преобразователя (рис. 9.4) может быть выполнен с использованием ферритового незамкнутого сердечника круглого или прямоугольного сечения, а также на основе телевизионного строчного трансформатора. При использовании ферритового сердечника круглой формы диаметром 8 мм число витков высоковольтной обмотки в зависимости от требуемой величины выходного напряжения может достигать 8000 витков провода диаметром 0,15…0,25 мм. Коллекторные обмотки содержат по 14 витков провода диаметром 0,5…0,8 мм.

Рис. 9.4. Схема двухтактного преобразователя с трансформаторной обратной связью.

Рис. 9.5. Вариант схемы высоковольтного преобразователя с трансформаторной обратной связью.

Обмотки обратной связи (базовые обмотки) содержат по 6 витков такого же провода. При подключении обмоток следует соблюдать их фази-ровку. Выходное напряжение преобразователя — до 8 кВ.

В качестве транзисторов преобразователя могут быть использованы транзисторы отечественного производства, например, КТ819 и им подобные.

Вариант схемы аналогичного преобразователя напряжения показан на рис. 9.5. Основное различие заключается в цепях подачи смещения на базы транзисторов.

Число витков первичной (коллекторной) обмотки — 2×5 витков диаметром 1,29 мм\ вторичной — 2×2 витков диаметром 0,64 мм. Выходное напряжение преобразователя целиком определяется числом витков повышающей обмотки и может достигать 10…30 кВ.

Преобразователь напряжения А. Чаплыгина не содержит резисторов (рис. 9.6). Он питается от батареи напряжением 5 6 и способен отдавать в нагрузку до 1 А при напряжении 12 В.

Рис. 9.6. Схема простого высокоэффективного преобразователя напряжения с питанием от батареи 5 В.

Диодами выпрямителя служат переходы транзисторов автогенератора.

Устройство способно работать и при пониженном до 1 В напряжении питания. Для маломощных вариантов преобразователя можно использовать транзисторы типа КТ208, КТ209, КТ501 и другие. Максимальный ток нагрузки не должен превышать максимального тока базы транзисторов.

Диоды VD1 и VD2 — не обязательны, однако позволяют получить на выходе дополнительное напряжение 4,2 В отрицательной полярности. КПД устройства около 85%.

Трансформатор Т1 выполнен на кольце К18x8x5 2000НМ1. Обмотки I и II имеют по 6, III и IV — по 10 витков провода ПЭЛ-2 0,5.

Преобразователь напряжения (рис. 9.7) выполнен по схеме индуктивной трехточки и предназначен для измерений высокоомных сопротивлений и позволяет получить на выходе не-стабилизированное напряжение 120… 150 В. Потребляемый преобразователем ток около 3…5 мА при напряжении питания 4,5 В. Трансформатор для этого устройства может быть создан на основе телевизионного трансформатора БТК-70. Его вторичную обмотку удаляют, взамен нее наматывают низковольтную обмотку преобразователя — 90 витков (два слоя по 45 витков) провода ПЭВ-1 0,19…0,23 мм. Отвод от 70-го витка снизу по схеме. Резистор R1 — величиной 12…51 кОм.

Рис. 9.7. Схема преобразователя напряжения по схеме индуктивной трехтонки.

Рис. 9.8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. 9.8) представляет собой однотакт-ный релаксационный генератор с емкостной положительной обратной связью (С2, СЗ). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1. В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке. При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и СЗ, которые одновременно являются делителем напряжения обратной связи. Когда транзистор VT2 закрывается, конденсаторы С2 и СЗ в течение паузы разряжаются через часть обмотки трансформатора, пе-ремагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2. При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается. Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток.

Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

На рис. 9.9 показана схема преобразователя стабилизированного напряжения с широтно-импульсным управлением. Преобразователь сохраняет работоспособность при уменьшении напряжения батареи с 9…. 12 до 3В. Такой преобразователь оказывается наиболее пригодным при батарейном питании аппаратуры.

КПД стабилизатора — не менее 70%. Стабилизация сохраняется при уменьшении напряжения источника питания ниже выходного стабилизированного напряжения преобразователя, чего не может обеспечить традиционный стабилизатор напряжения. Принцип стабилизации, использованный в данном преобразователе напряжения.

Рис. 9.9. Схема преобразователя стабилизированного напряжения.

При включении преобразователя ток через резистор R1 открывает транзистор ѴТ1, коллекторный ток которого, протекая через обмотку II трансформатора Т1, открывает мощный транзистор ѴТ2. Транзистор ѴТ2 входит в режим насыщения, и ток через обмотку I трансформатора линейно увеличивается. В трансформаторе происходит накопление энергии. Через некоторое время транзистор ѴТ2 переходит в активный режим, в обмотках трансформатора возникает ЭДС самоиндукции, полярность которой противоположна приложенному к ним напряжению (магнитопровод трансформатора не насыщается). Транзистор ѴТ2 лавинообразно закрывается и ЭДС самоиндукции обмотки I через диод VD2 заряжает конденсатор СЗ. Конденсатор С2 способствует более четкому закрыванию транзистора. Далее процесс повторяется.

Через некоторое время напряжение на конденсаторе СЗ увеличивается настолько, что открывается стабилитрон VD1, и базовый ток транзистора ѴТ1 уменьшается, при этом уменьшается ток базы, а значит, и коллекторный ток транзистора ѴТ2. Поскольку накопленная в трансформаторе энергия определяется коллекторным током транзистора ѴТ2, дальнейшее увеличение напряжения на конденсаторе СЗ прекращается. Конденсатор разряжается через нагрузку. Таким образом на выходе преобразователя поддерживается постоянное напряжение.

Выходное напряжение задает стабилитрон VD1. Частота преобразования изменяется в пределах 20… 140 кГц.

Преобразователь напряжения, схема которого показана на рис. 9.10, отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько вторичных стабильных напряжений. Использование интегрирующего звена в цепи обратной связи позволяет улучшить стабилизацию вторичного напряжения.

Рис. 9.10. Схема преобразователя стабилизированного напряжения с биполярным выходом.

Частота преобразования уменьшается почти линейно при уменьшении питающего напряжения. Это обстоятельство усиливает обратную связь в преобразователе и повышает стабильность вторичного напряжения. Напряжение на сглаживающих конденсаторах вторичных цепей зависит от энергии импульсов, получаемых от трансформатора. Наличие резистора R2 делает напряжение на накопительном конденсаторе СЗ зависимым и от частоты следования импульсов, причем степень зависимости (крутизна) определяется сопротивлением этого резистора. Таким образом, подстроечным резистором R2 можно устанавливать желаемую зависимость изменения напряжения вторичных обмоток от изменения напряжения питания. Полевой транзистор ѴТ2 — стабилизатор тока. КПД преобразователя может доходить до 70… 90%.

Нестабильность выходного напряжения при напряжении питания 4… 12 В не более 0,5%, а при изменении температуры окружающего воздуха от -40 до +50°С — не более 1,5%. Максимальная мощность нагрузки — 2 Вт.

При налаживании преобразователя резисторы R1 и R2 устанавливаются в положение минимального сопротивления и подключают эквиваленты нагрузок RH. На вход устройства подается напряжение питания 12 В и с помощью резистора R1 на нагрузке Rн устанавливается напряжение 15 В. Далее напряжение питания уменьшают до 4В и резистором R2 добиваются напряжения на выходе также 15 В. Повторяя этот процесс несколько раз, добиваются стабильного напряжения на выходе.

Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователи одинаковы. Обмотки намотаны на броневом магнитопроводе Б26 из феррита 1500НМ. Обмотка I содержит 8 витков провода ПЭЛ 0,8, а II — 6 витков провода ПЭЛ 0,33 (каждая из обмоток III и IV состоит из 15 витков провода ПЭЛ 0,33 мм).

Рис. 9.11. Схема понижающего преобразователя напряжения на основе блокинг-генератора.

Схема простого малогабаритного преобразователя сетевого напряжения, выполненного из доступных элементов, показана на рис. 9.11. В основе устройства обычный блокинг-генера-тор на транзисторе VT1 (КТ604, КТ605А, КТ940).

Трансформатор Т1 намотан на броневом сердечнике Б22 из феррита М2000НН. Обмотки Іа и Іб содержат 150+120 витков провода ПЭЛШО 0,1 мм. Обмотка II имеет 40 витков провода ПЭЛ 0,27 мм III — 11 витков провода ПЭЛШО 0,1 мм. Вначале наматывается обмотка Іа, затем — II, после — обмотка lb, и, наконец, обмотка III.

Источник питания не боится короткого замыкания или обрыва в нагрузке, однако имеет большой коэффициент пульсаций напряжения, низкий КПД, небольшую выходную мощность (до 1 Вт) и значительный уровень электромагнитных помех. Питать преобразователь можно и от источника постоянного тока напряжением 120 6. В этом случае резисторы R1 и R2 (а также диод VD1) следует исключить из схемы.

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гейгера-Мюллера может быть собран по схеме на рис. 9.12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор СЗ через выпрямительные диоды VD2, VD3 до напряжения 440 В. Конденсатор СЗ должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, С2.

Рис. 9.12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера.

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16x10x4,5 3000НМ и изолируют его слоем лакоткани, тефлона или фторопласта. Вначале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения. При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4… 1,0 мА.

Преобразователь напряжения (рис. 9.13) предназначен для питания фотовспышки. Трансформатор Т1 выполнен на магнитопроводе из двух сложенных вместе пермаллоевых колец К40х28х6. Обмотка коллекторной цепи транзистора VT1 имеет 16 витков ПЭВ-2 0,6 мм; его базовой цепи — 12 витков такого же провода. Повышающая обмотка содержит 400 витков ПЭВ-2 0,2.

Рис. 9.13. Схема преобразователя напряжения для фотовспышки.

Неоновая лампа HL1 использована от стартера лампы дневного света. Выходное напряжение преобразователя плавно повышается на конденсаторе фотовспышки до 200 В за 50 секунд. Устройство при этом потребляет ток до 0,6 А.

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 9.14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью. Вне зависимости от частоты следования вспышек света генератор работает непрерывно, расходуя большое количество энергии и разряжая батареи.

Рис. 9.14. Схема модифицированного преобразователя напряжения ПН-70.

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — ѴТЗ по схеме Дарлингтона. Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением резистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя. Когда напряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя.

Транзистор ѴТ1 должен быть установлен на медном радиаторе размерами 50x22x0,5 мм.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

www.qrz.ru

выбор, схемы для повторения в домашних условиях

Случается так, что необходимо использовать переносимое электронное устройство в месте, где отсутствует сетевое напряжение равное 220 вольт. Проще всего для этого использовать аккумуляторную батарею, напряжение на которой обычно составляет 12 вольт. Но не все приборы могут работать от пониженного напряжения. Для решения такой задачи и используются преобразователи с 12 на 220 вольт. Другое их название – инверторы.

Назначение и параметры инверторов

Инвертор — это прибор, который предназначен для преобразования амплитуды и формы сигнала. Он трансформирует переменное напряжение сети в постоянное. Часто преобразователи сигнала подключаются к автомобильным электрическим сетям, генераторам или к стационарным аккумуляторным блокам. Это нужно для получения переменного тока, использующегося в питании: бытовых приборов, электроинструментов, радиоаппаратуры. Варианты использования инвертора разнообразны:

  • обеспечение непрерывности питания электрических устройств и приборов при аварии в сети 220 вольт;
  • организация полной автономности от электросетей;
  • при длительных путешествиях на средствах передвижения, использующих в своей работе генераторы или аккумуляторы, например, лодка, самолёт, автомобиль.

Отличаются инверторы друг от друга прежде всего формой выходного сигнала и мощностью. Она и определяет максимальную нагрузку, которую можно подключить к устройству.

Виды и типы приборов

Инверторы различаются по принципу действия. Первые устройства выпускались механического типа. Затем, им на смену пришли полупроводниковые, а современная схемотехника уже построена на импульсных блоках. Различают следующие принципы построения схем:

  1. Мостового типа (бестрансформаторная). Применяется для устройств питания с мощностью более 500 ВА и выше.
  2. С применением трансформатора с нулевым выводом. Предназначены для устройств питания с мощностью до 500 ВА.
  3. Трансформаторная мостовая схема. Применяется для устройств питания в широком диапазоне мощностей до десяток киловатт.

Кроме этого их разделяют, в зависимости от требований к питающему напряжению, на однофазные и трёхфазные приборы. По виду выходного сигнала бывают:

  • с прямоугольной формой;
  • со ступенчатой формой;
  • с синусоидальной формой.

Для техники и устройств, которые не требуют правильного синусоидального сигнала, такие как нагреватели, осветители, применяются преобразователи с прямоугольной, трапецеидальной, треугольной формой выходного напряжения. Основным преимуществом таких преобразователей является невысокая цена.

Для оборудования, требующего надёжного питания, используются инверторы с правильной синусоидальной формой сигнала. Такое оборудование стоит существенно дороже, но и его стабильность выше.

Основные характеристики преобразователей

В первую очередь, при выборе учитывается мощность инвертора. Нужная мощность рассчитывается суммарно исходя из нагрузки, планируемой к подключению с добавлением 25% к полученному результату. Это позволяет не перегружать преобразователь и создаёт для него наилучшие условия работы. Наибольшей популярностью пользуются инверторы с мощностью до 5000Вт, но для подключения всех домашних потребителей энергии может не хватить и 15000ват. Для переносных устройств используют инверторы с нагрузочной способностью до 1 кВт.

Кроме номинальной мощности, существует её пиковое значение — это наибольший уровень мощности, которое может кратковременно выдержать инвертор без негативных последствий для его работы. В описаниях параметров устройства указывается чаще всего именно её величина.

Необходимо понимать, что мощность при включении ряда приборов, использующих в своей конструкции двигатели или мощные пусковые конденсаторы, отличается от номинальной. Это такие устройства, как насосы, холодильники, стиральные машинки, пылесосы, которые при включении потребляют пиковую мощность. В то же время такая техника, как телевизор, компьютер, лампа, магнитофон, не превышает номинальное значение своей мощности. Мощность приборов измеряется в вольт-амперах (ВА), но часто можно встретить её указание в ватах (Вт). Зависимость между этими единицами измерения описывается отношением: 1 Вт=1,6 ВА.

Немаловажным параметром является и форма выходного сигнала. Правильная синусоида характеризуется частотой напряжение и плавностью его изменения. Этот параметр важен для систем с активной мощностью. К таким устройствам относятся: электродвигатели, насосы, компрессоры. В большинстве случаев для питания бытовой техники подойдут преобразователи с модифицированной синусоидой. Также к техническим характеристикам инвертора с 12 на 220 вольт относят:

  1. Допустимый диапазон входного напряжения. Обозначает амплитуду входного сигнала, при котором обеспечивается стабильность в работе устройства.
  2. Уровень наименьшего и наибольшего выдаваемого напряжения. Составляет не более 10 вольт от номинального значения.
  3. Значение коэффициента полезного действия (КПД). Хорошими показателями считается диапазон от 85 до 90 процентов.
  4. Класс защиты. Должен быть не ниже степени IP54 по международной классификации.
  5. Система охлаждения. Может использоваться пассивная или активная с применением вентиляторов.
  6. Дополнительные возможности. Наиболее востребованными функциями является защита от короткого замыкания, перегруза, перегрева, повышенной амплитуды входного сигнала. Из сопутствующих атрибутов обращается внимание на удобство подключения к клеммам, форму и вес устройства.

При выборе потребуется определиться, для какого типа устройств будет использоваться преобразователь тока с 12 на 220 вольт. Для систем автономной работы рассматривается возможность параллельного подключения инвертора к аккумуляторным батареям и сети переменного тока. Например, для системы автономного отопления.

Популярные производители

При выборе стоит обращать внимание и на производителя продукции. Как показывает практика, разные модели могут иметь одинаковые характеристики, что затрудняет правильный выбор. Наиболее популярными компаниями, производящими инверторы, являются:

  1. Titan. Основанная в 1989 году в Тайване компания имеет огромное количество дистрибьюторов на различных рынках мира. Вся их продукция сертифицирована и соответствует стандартам CE, TUV, UL и ISO 9001. Техника отличается продуманной системой охлаждения и надёжностью.
  2. Energenie. Является брендом компании Gembird. Специфика производства направлена на то, чтобы тем или иным способом экономить электроэнергию. Голландский производитель выпускает доступную технику с хорошими техническими характеристиками.
  3. Luxeon. Компания выделяется привлекательным дизайном своих устройств. В продукции производитель использует новаторские разработки инженеров многих стран мира. Продукция выпускается на крупнейших производственных мощностях, оборудованных современными технологическими линиями в различных странах.
  4. Powercom. За короткий срок фирма заняла лидирующие позиции в отрасли на Тайване и вышла на мировой рынок. Основным достоинством, по сравнению с другими компаниями, является наличие в приборах всевозможных дополнительных функций, и это всё при низкой цене. Корпорация принимает участие в научно-исследовательских разработках в области обеспечения электропитанием.

Компании с именем следят за соблюдением технического процесса на всех стадиях изготовления устройства. Такие производители имеют обширную сеть сервисных центров по всей Европе, что позволяет без труда проводит гарантийное и послегарантийное обслуживание продукции.

Самостоятельное изготовление устройства

Если по каким-то причинам не получается приобрести преобразователь напряжения 12в на 220в, то инвертор своими руками несложно изготовить и в домашних условиях. В первую очередь это относится к аналоговым устройствам, радиодетали для которых можно взять из старой техники. Кроме того, при самостоятельной сборке получится разобраться в нюансах построения, что может пригодиться для осуществления ремонта приборов такого типа.

Простой и надёжный инвертор

Существует большое количество разнообразных схем преобразователей. Работа их основана на использовании задающего генератора, управляющего работой транзисторных ключей. А они, в свою очередь, передают импульсный сигнал на трансформатор, задача которого преобразовать сигнал до уровня 220 вольт. Использование в качестве ключей мощных полевых транзисторов (мосфетов) значительно упрощает схемотехнику устройств.

Применяя в качестве генератора специализированную микросхему КР1211ЕУ1, имеющую два мощных канала для управления ключами, можно собрать надёжное и несложное устройство.

К выходам микросхемы, прямому и инверсному, подключаются мосфеты IRL2505. Сопротивление открытого канала IRL2505 составляет всего 0,008 Ом. Это даёт возможность не использовать радиаторы при требуемой мощности до 100 Вт.

Частота генерации микросхемы задаётся цепочкой R1-С1 и рассчитывается по формуле: f=70000/(R1*C1). Цепочка R2-C2 предназначена для плавного запуска генератора. В качестве линейного стабилизатора DA2 используется 78L08, с напряжением стабилизации +8 вольт. Резисторы используются мощностью 0,25 ватт. Конденсатор С1 ставится плёночного типа, а С6 любого вида, но рассчитанный на номинальное напряжение не менее 400 вольт. Трансформатор используется с обмотками, рассчитанными на 220 и 12 вольт.

Схема на транзисторах

В качестве основы для изготовления конструкции используется генератор, работающий на частоте 57 Гц. Задающий генератор управляет работой силовых ключей, выполненный на мощных полевых транзисторах. Эти транзисторы можно заменить на IRFZ40, IRF3205, IRF3808, а биполярные на КТ815/817/819/805.

Мощность инвертора зависит от количества комплементарных пар полевиков на выходе и характеристик трансформатора. Напряжение на выходе составляет 220–260 вольт. При использовании двух пар транзисторов мощность достигает 300 ватт. Такой преобразователь не требует наладки и при правильной сборке и исправных радиодеталях работает сразу. При работе без нагрузки ток потребления составляет до 300 мА. Для надёжной работы транзисторы устанавливаются на теплоотвод через изоляционные прокладки. Силовые дорожки, в случае развода на печатной плате, выполняются шириной не менее 5 мм или проводом сечением от 0,75 мм2.

Суть работы устройства заключается в преобразовании постоянного напряжения в переменное, после чего сигнал подаётся на повышающий трансформатор. Первичная обмотка повышающего трансформатора с 12 на 220 вольт имеет меньшее количество витков, чем вторичная. При протекании тока в первичной обмотке, под действием переменного магнитного поля, на вторичной обмотке возникает электродвижущая сила (ЭДС). При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Для расчёта трансформатора можно воспользоваться справочниками или онлайн-калькуляторами, но проще взять готовый из ненужного источника бесперебойного питания.

Мощный повышающий прибор

Такие преобразователи изготавливаются по сложным схемам и сложны для повторения даже опытным радиолюбителям. Например, схема инвертора 12 в 220 на 3000Вт:

Своими руками выполнить такую схему практически невозможно, так как потребуется не только правильно рассчитать трансформаторы, но и верно настроить задающий генератор. А такие операции выполнить без специального оборудования затруднительно.

Генератор выполнен на микросхеме TL081. Его питание осуществляется девяти вольтовым стабилизатором. Сигнал в микросхеме преобразуется, уменьшается по частоте и подаётся на силовые ключи. В схеме реализована защита выхода от перегрузки, а вход защищается плавким предохранителем от перенапряжения.

Таким образом, выполнить самостоятельно преобразователь мощности до 500 ватт не составит труда, но если понадобится изготовить более мощное устройство, то целесообразнее купить готовое.

pochini.guru

ПРОСТЕЙШИЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ

Всё, надоело менять батарейки в мультиметрах! Давно хотел собрать преобразователь от пальчиковой батарейки, но потом подумал, что и их придется менять. Захотелось питать преобразователь от аккумуляторов. Это бОльшая емкость, по сравнению со стандартными кронами, да и затрат поменьше.

Схема инвертора для батарейки тестера

Нашел в сети схему, собрал устройство. Впечатлило. Без нагрузки потребляет около 0.2 мА, а КПД доходит, как там было написано, до 94%. Пробовал запитывать устройство от 1.5 В — напряжение на выходе не понравилось, а перематывать трансформатор лень. Поэтому взял аккумулятор от мобильника, он плоский, емкость для мультиметра хорошая, да и форма тоже.

Конденсаторы на 1000 мкФ не ставил, поставил параллельно керамику и пленку на 120 нФ. На работу они не сильно повлияли. Транзистор взял старый советский. Здесь надо ставить германиевые транзисторы, тогда минимальное напряжение питания снизится. В источнике написано, что работа начинается с 0.4 вольт и продолжается аж до 0.2 Вольт. Это получается можно питать устройство даже от маленькой солнечной батарейки, картошки, лимона и прочего.

В параллель выходу поставил стабилитрон на 10 В — с целью защиты мультиметра от всплесков питания. Трансформатор мотал на ферритовом колечке. Моточные данные: 10 витков 0.5 мм и 50 витков 0.1 мм проводом — старался витком к витку, а получилось как всегда. Если преобразователь не заработает — меняем местами выводы вторички, что я и сделал после первого запуска, хоть схема и выдавала напряжение чуть больше входного. 

Конденсатор С1, на 80 нФ, можно менять от 1 до 100 нФ, он влияет на выходное напряжение, соответственно и на КПД.

Видео работы преобразователя

Понятно, что этот простейший преобразователь напряжения можно использовать не только для получения 9 вольт на выходе, и не только для запитывания мультиметра — область его применения очень широкая, в том числе и для светодиодных фонариков. Автор конструкции BFG5000.

   Форум по ИП

   Обсудить статью ПРОСТЕЙШИЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ




radioskot.ru

Схема преобразователя | Микросхема — радиолюбительские схемы

Когда необходим импульсный преобразователь

Предлагаю вам для начала представить такой случай из радиолюбительской практики. Вы захотели собрать усилитель своими руками. Для упрощения отбросим их деление на типы и классы. Будем руководствоваться одним, для многих, основным параметром усилителя звуковой частоты – его выходная мощность. Вы решили не размениваться по мелочам и собрать для себя усилок на 500 ватт. Всё. Цель установлена. Перед вами стоит задача найти подходящую схему. Что дальше? Правильно. Шарим на популярных радиолюбительских сайтах, не забывая, конечно, про xn--80a3afg4cq.xn--p1ai, в поисках заветной схемы усилителя звуковой частоты.

Допустим, из кучи предложений нашли две наиболее удовлетворяющих потребности. К примеру, схема номер раз – транзисторный биполярный усилитель мощности и схема номер два – транзисторный полевой усилитель мощности. Теперь из них нужно выбрать одну, на базе которой вы будете паять желанный, радующий ухо мощным звуком девайс. Руководствуясь субъективными оценочными критериями, выбираете, допустим, первый вариант. Ага. Спаять схему – полбеды, и здесь особых трудностей возникнуть не должно. Но вот перед вами вырисовывается огромная, типичная в подобной ситуации проблема. Думаете какая? Правильно. А чем же я его буду питать? Точнее – от чего! Это, пожалуй, одна из главенствующих проблем при конструировании мощных электронных устройств.

Если применять трансформаторный источник питания, то для нашей схемы габаритная мощность трансформатора должна быть не менее 625…650 ватт. Кроме того, что подобные трансы не валяются на дороге, так они ещё и жутко дорогие. А если вы захотели использовать собранный усилитель мощности в автомобиле. Как тогда его питать? В этом случае приходят на помощь импульсные источники питания и импульсные преобразователи напряжения. Собрать и довести до ума импульсный блок питания, преобразователь, конечно, сложнее традиционного, но другого выхода нет. Приходится паять. Ведь мы так близко к заветному первому запуску усилителя.

От теории к практике конструирования

Сегодня расскажем и приведем схему преобразователя напряжения с мощностью нагрузки до 1000 ватт. Конвертер отлично подойдет для питания как автомобильного усилителя, так и любого другого электрического устройства от бортовой сети. Напряжение на выходе преобразователя равно 75…105 вольтам. Но изменить его никогда не поздно. На вход преобразователя подается стандартное автомобильное напряжение 12 вольт. Схема преобразователя:

Добавлено: из радиолюбительской беседы в комментариях стало ясно, что схема преобразователя не полностью надежна и работоспособна. Мы немного изменили силовой каскад и в итоге получилась вот такая схема:

Добавлено: подробнее о питании сетевым напряжением смотрите комментарий 11. Также стоит обратить внимание на 21. В 31 фото собранного блока питания. Описание изменений читайте в 35, 37, 41.

Собирается преобразователь на широко распространенной микросхеме ШИМ TL494 и мощных MOSFET на выходе, способными обеспечить необходимую силу тока.

Для этой цели сгодятся по три параллельно соединенных полевых транзистора IRFZ44N на плечо. Итого, шесть штук, т.к. преобразователь, конечно, двухтактный. Кстати, такие транзисторы стоят в автомобильном сабвуфере Prology ATB-1000 и Prology ATB-1200.

Можно поставить в схему MOSFET IRF3710, помощнее и понадежнее. На выход преобразователя традиционно ставят импульсный трансформатор. А после него уже мощные выпрямительные диоды или диодный мост и фильтрующие конденсаторы, т.е. все обязательные для блоков питания радиокомпоненты.

Рассчитываем импульсный трансформатор

Теперь о том, как рассчитать импульсный трансформатор для нашей схемы преобразователя. Входное напряжение потенциалом 13,8 вольт должно преобразовываться примерно в 70 вольт (чтобы после диодов и фильтрующих конденсаторов получилось около 90 В). Частота преобразователя 50 кГц. Её задает генератор с ШИМ TL494 (левая часть схемы преобразователя). Допустим, у нас в наличии имеется ферритовое кольцо М2500НМС К65х40х9. Из него мы будем получать импульсный трансформатор для нашего преобразователя. Буковка «С» в маркировке феррита обозначает, что он предназначен для работы в сильных магнитных полях. Габаритная мощность такого кольца примерно 1100 ватт, т.е. то, что нам нужно. А рассчитывается она по формуле:

Pгаб = 3,14 * (D — d) * h * d * d * f * 0,25 / 12000 => Pгаб = 3,14*(65-40)*9*40*40*50*0,25/12000?1100 Вт.

Как можно заметить, габаритная мощность зависит не только от размеров ферритового сердечника, но и от частоты тока преобразователя. Причем зависимость существенная. Таким образом, при проектировании преобразователя напряжения мы не скованы частотной характеристикой, как это было бы в случае с традиционным сетевым блоком питания, рассчитанном на промышленную частоту 50…60 Гц. Это не может не радовать, так как при расчетах, обнаружив несоответствие габаритной мощности трансформатора мощности нагрузки, мы можем просто увеличить частоту задающего генератора. Частота, если брать в широких пределах, может составлять 5…500 кГц, обычно, конечно, этот разброс значительно уже – 10…100 кГц. При этих значениях коэффициент полезного действия импульсного трансформатора равен 95…99%! Но здесь ещё необходимо, конечно, учитывать характеристики материала сердечника. Для предварительного расчета можно взять среднюю частоту преобразования 50 кГц. Увеличив частоту до 100 кГц, мы получим габаритную мощность импульсного трансформатора для нашего преобразователя в два раза больше, т.е. под 2 кВт.

Сила тока во вторичной обмотке I2 = 1000 / (70+70) ? 7 ампер.

Теперь определим плотность тока в обмотках: J = 1,5 + 24 / (Pгаб)1/2 => J=1,5+24/(1100)1/2 = 2,2 А/мм2.

Теперь необходимо определить разность потенциалов, подводимую к импульснику для рассматриваемой схемы преобразователя напряжения. Поскольку первичная обмотка поделена на две с отводом от средней точки, U1 = 2*13,8 – Uнас, где Uнас – падение напряжения на переходе сток-исток транзистора. Для IRFZ44N примем Uнас = 0,8 В. Для MOSFET IRF3710 это значение поменьше. U1 = 2*13,8 – 0,8 ? 27 вольт.

Отлично. Находим количество витков и диаметр провода первичной обмотки. W1 = 500 * U1 / (F * 0,25 * (D — d) * h) => W1=500*27/(50*0,25*(65-40)*9) ? 5 витков. Т.е. по три витка на плечо с отводом от середины. Итого, W1=6. Для вычисления диаметра обмоточного провода определим силу тока в первичной обмотке. I1 = 1000 ватт / (27 вольт/2*КПД) => I1 = 1000 ватт / (27 вольт/2*0,9) ? 83 А. Отсюда диаметр провода равен d1 = 0,6*(83 А)1/2 = 5,46 мм. Если считать через плотность тока, то получаем d1 = (83 (А) / 2,2 (А/мм2) / 3,1415)1/2 * 2 = 6,9 мм. Найдем среднее значение d1= (5,46+6,9)/2 ? 6 мм. Можно и нужно взять провод меньшего диаметра и намотать первичку в несколько жил. Например, 1,5 мм x 16 жил.

Число витков вторичной обмотки W2 = W1*U2 / U1 => W2=6*(70+70) / 27 = 31 виток или примерно по 15…16 витков с отводом от середины медным проводом диаметром d2 = 0,6*(7 А)1/2 ? 1,6 мм. Для верности можно пустить три жилы диаметром 1 мм. Или 0,63 мм x 6 жил.

После всех свистоплясок получается импульсный трансформатор для преобразователя примерно следующего вида:

Вот мы и произвели беглый расчет импульсного трансформатора для схемы преобразователя мощностью 1000 ВА. Причем сделали это вручную, без использования компьютерных программ. Методик расчета трансформаторов предостаточно. Для получения более точных показателей, конечно, желательно воспользоваться вычислительной программой для расчета трансформатора. И лучше не одной. Т.к. полученные значения в них порой очень сильно разняться. А при расчете в нескольких прогах можно аналитически-статистическим методом отсеять более точные данные. Одну из программ можно скачать в статье автомобильный преобразователь напряжения. Там же можно почитать дополнительно о подобных конструкциях и схемах преобразователей. И ещё несколько скачайте по ссылке ниже.

Скачать программы для расчета трансформатора

Автором ExcellentIT v.3.5.0.0 и Lite-CalcIT v.1.7.0.0 является Владимир Денисенко из г. Пскова, автором Transformer v.3.0.0.3 и Transformer v.4.0.0.0 – Евгений Москатов из г. Таганрога.

Советую применять все указанные программы для расчета импульсных источников питания комплексно.

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Расчет силового трансформатора
Преобразователь напряжения 12 — 220

xn--80a3afg4cq.xn--p1ai

Низковольтные преобразователи напряжения для светодиодов

Светодиоды, как источники оптического излучения, имеют неоспоримые достоинства: малые габариты, высокую яркость свечения при минимальном (единицы мА) токе, экономичность.

Но в силу технологических особенностей они не могут светиться при напряжении ниже 1,6… 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодных излучателей в широком классе устройств, имеющих низковольтное питание, обычно от одного гальванического элемента.

Несмотря на очевидную актуальность проблемы низковольтного питания светодиодных источников оптического излучения, известно весьма ограниченное число схемных решений, в которых авторы пытались решить эту задачу.

В этой связи ниже приведен обзор схем питания светодиодов от источника низкого (0,25…1,6 В) напряжения. Многообразие схем, приведенных в этой главе, можно свести к двум основным разновидностям преобразования напряжения низкого уровня в высокое. Это схемы с емкостными и индуктивными накопителями энергии [Рк 5/00-23].

Удвоитель напряжения

На рисунке 1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов выполнен на транзисторах разной структуры: КТ361 и КТ315.

Частота следования импульсов определяется постоянной времени R1C1, а продолжительность импульсов — постоянной времени R2C1. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен светодиод HL1 (АЛ307КМ) красного цвета свечения и германиевый диод VD1 типа Д9.

Между выходом генератора импульсов и точкой соединения светодиода с германиевым диодом подключен электролитический конденсатор С2 большой емкости.

В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через диод VD1 и резистор R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2

открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключенным последовательно с источником питания.

Суммарное напряжение приложено к цепи светодиод — переход эмиттер — коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер — коллектор становится малым.

Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду: следует его яркая вспышка. После этого процесс заряда — разряда конденсатора С2 периодически повторяется.

Рис. 1. Принципиальная схема удвоителя напряжения для питания светодиода.

Поскольку светодиоды допускают работу при кратковременном токе в импульсе, в десятки раз превосходящем номинальные значения, повреждения светодиода не происходит.

Если необходимо повысить надежность работы светодиодных излучателей с низковольтным питанием и расширить диапазон напряжения питания в сторону увеличения, последовательно со светодиодом следует включить токоограничи-вающий резистор сопротивлением десятки, сотни Ом.

При использовании светодиода типа АЛ307КМ с напряжением начала едва заметного свечения 1,35… 1,4 В и напряжением, при котором без ограничительного сопротивления ток через светодиод составляет 20 мА, 1,6… 1,7 В, рабочее напряжение генератора, представленного на рисунке 1, составляет 0,8… 1,6 В.

Границы диапазона определены экспериментально тем же образом: нижняя указывает напряжение начала свечения светодиода, верхняя — напряжение, при котором ток, потребляемый всем устройством, составляет примерно 20 мА, т.е. не превышает в самых неблагоприятных условиях эксплуатации предельный ток через светодиод и, одновременно, сам преобразователь.

Как уже отмечалось ранее, генератор (рисунок 1) работает в импульсном режиме, что является с одной стороны недостатком схемы, с другой стороны — достоинством, поскольку позволяет генерировать яркие вспышки света, привлекающие внимание.

Генератор достаточно экономичен, поскольку средний ток, потребляемый устройством, невелик. В то же время в схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор большой емкости (С2).

Упрощенный вариант преобразователя напряжения

На рисунке 2 показан упрощенный вариант генератора, работающего аналогично изложенному выше. Генератор, используя малогабаритный электролитический конденсатор, работает при напряжении питания от 0,9 до 1,6 В.

Средний ток, потребляемый устройством, не превышает 3 мА при частоте следования импульсов около 2 Гц. Яркость генерируемых вспышек света несколько ниже, чем в предыдущей схеме.

Рис. 2. Схема простого низковольтного преобразователя напряжения на двух транзисторах из 0,9В в 2В.

Генератор с применением телефонного капсюля

Генератор, показанный на рис. 9.3, использует в качестве нагрузки телефонный капсюль ТК-67. Это позволяет повысить амплитуду генерируемых импульсов и понизить тем самым на 200 мВ нижнюю границу начала работы генератора.

За счет перехода на более высокую частоту генерации удается осуществить непрерывную «перекачку» (преобразование) энергии и ощутимо снизить емкости конденсаторов.

Рис. 3. Схема низковольтного генератора преобразователя напряжения с использованием катушки телефона.

Генератор с удвоением напряжения на выоде

На рисунке 4 показан генератор с выходным каскадом, в котором осуществляется удвоение выходного напряжения. При закрытом транзисторе VT3 к светодиоду приложено только небольшое по величине напряжение питания.

Электрическое сопротивление светодиода велико в силу ярко выраженной нелинейности ВАХ и намного превышает сопротивление резистора R6. Поэтому конденсатор С2 оказывается подключенным к источнику питания через резисторы R5 и R6.

Рис. 4. Схема низковольтного преобразователя с удвоением выходного напряжения.

Хотя вместо германиевого диода использован резистор R6, принцип работы удвоителя напряжения остается тем же: заряд конденсатора С2 при закрытом транзисторе VT3 через резисторы R5 и R6 с последующим подключением заряженного конденсатора последовательно с источником питания.

При приложении удвоенного таким образом напряжения динамическое сопротивление светодиода на более крутом участке ВАХ становится на время разряда конденсатора порядка 100 Ом и менее, что намного ниже сопротивления шунтирующего конденсатор резистора R6.

Расширить рабочий диапазон питающих напряжений (от 0,8 до 6 В) позволяет использование резистора R6 вместо германиевого диода. Если бы в схеме стоял германиевый диод, напряжение питания устройства было бы ограничено величиной 1,6…1,8 В.

При дальнейшем увеличении напряжения питания ток через светодиод и германиевый диод вырос бы до неприемлемо высокой величины и произошло бы их необратимое повреждение.

Преобразователь на основе генератора ЗЧ

В генераторе, представленном на рисунке 5 одновременно со световыми вырабатываются звонкие импульсы звуковой частоты. Частота звуковых сигналов определяется параметрами колебательного контура, образованного обмоткой телефонного капсюля и конденсатора С2.

Рис. 5. Принципиальная схема преобразователя напряжения для светодиода на основе генератора ЗЧ.

Преобразователи напряжения на основе мультивибраторов

Источники питания светодиодов на основе мультивибраторов изображены на рисунках 6 и 7. Первая схема выполнена на основе асимметричного мультивибратора, вырабатывающего, как и устройства (рис. 1 — 5), короткие импульсы с протяженной междуимпульсной паузой.

Рис. 6. Низковольтный преобразователь напряжения на основе асимметричного мультивибратора.

Накопитель энергии — электролитический конденсатор СЗ периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.

В отличие от предыдущей схемы генератор (рис. 7) обеспечивает непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах.

Рис. 7. Преобразователь для питания светодиода от низковольтного источника 0,8 — 1,6В.

В этой связи емкости конденсаторов в этой схеме на 3…4 порядка ниже. В то же время яркость свечения заметно понижена, а средний ток, потребляемый генератором при напряжении источника питания 1,5 6 не превышает 3 мА.

Преобразователи напряжения с последовательным соединением транзисторов

Рис. 8. Преобразователь напряжения с последовательным соединением транзисторов разного типа проводимости.

В генераторах, показанных далее на рисунках 8 — 13, в качестве активного элемента используется несколько необычное последовательное соединение транзисторов разного типа проводимости, к тому же, охваченных положительной обратной связью.

Рис. 9. Двухтранзисторный преобразователь напряжения для светодиода с применением катушки от телефона.

Конденсатор положительной обратной связи (рисунок 8) одновременно выполняет роль накопителя энергии для получения напряжения, достаточного для питания светодиода.

Параллельно переходу база — коллектор транзистора VT2 (типа КТ361) включен германиевый диод (либо заменяющее его сопротивление, рис. 12).

В генераторе с RC-цепочкой (рис. 8) за счет существенных потерь напряжения на полупроводниковых переходах рабочее напряжение устройства составляет 1,1… 1,6 В.

Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-вариант схемы генераторов, использующих индуктивные накопители энергии (рис. 9 — 13).

Рис. 10. Схема простого низковольтного преобразователя напряжения 0,75В -1,5В в 2В на основе LC-генератора.

В качестве индуктивного накопителя энергии в первой из схем использован телефонный капсюль (рис. 9). Одновременно со световыми вспышками генератор вырабатывает акустические сигналы.

При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный экономичный режим работы, вырабатывая прерывистые световые и звуковые сигналы.

Переход на более высокие рабочие частоты возможен за счет использования малогабаритной катушки индуктивности с большой добротностью. В связи с этим появляется возможность заметно уменьшить объем устройства и понизить нижнюю границу питающего напряжения (рис. 10 — 13).

В качестве индуктивности использована катушка контура промежуточной частоты от радиоприемника «ВЭФ» индуктивностью 260 мкГн. На рис. 11, 12 показаны разновидности таких генераторов.

Рис. 11. Схема низковольтного преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Рис. 12. Схема простого преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Наконец, на рисунке 13 показан наиболее упрощенный вариант устройства, в котором вместо конденсатора колебательного контура использован светодиод.

Преобразователи напряжения конденсаторного типа (с удвоением напряжения), используемые для питания светодиодных излучателей, теоретически могут обеспечить снижение рабочего напряжения питания только до 60% (предельное, идеальное значение — 50%).

Рис. 13. Очень простой низковольтный преобразователь напряжения с включенным светодиодом вместо конденсатора.

Использование в этих целях многокаскадных умножителей напряжения неперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Преобразователи с индуктивными накопителями энергии более перспективны при дальнейшем снижении рабочего напряжения генераторов, обеспечивающих работу светодиодов. При этом сохраняются высокий КПД и простота схемы преобразователя.

Преобразователи напряжения индуктивного и индуктивно-емкостного типа

На рисунках 14 — 18 показаны преобразователи для питания светодиодов индуктивного и индуктивно-емкостного типа, выполненные на основе генераторов с использованием в качестве активного элемента аналогов инжекционно-полевого транзистора [Рк 5/00-23].

Рис. 14. Схема низковольтного преобразователя напряжения 1-6В в 2В индуктивно-емкостного типа.

Преобразователь, изображенный на рисунке 14, является устройством индуктивно-емкостного типа. Генератор импульсов выполнен на аналоге инжекционно-полевого транзистора (транзисторы VT1 и VT2).

Элементами, определяющими рабочую частоту генерации в диапазоне звуковых частот, являются телефонный капсюль BF1 (типа ТК-67), конденсатор С1 и резистор R1. Короткие импульсы, вырабатываемые генератором, поступают на базу транзистора VT3, открывая его.

Одновременно происходит заряд/разряд емкостного накопи 1еля энергии (конденсатор С2). При поступлении импульса положительно заряженная обкладка конденсатора С2 оказывается соединенной с общей шиной через открытый на время действия импульса транзистор VT2. Диод VD1 закрывается, транзистор VT3 — открыт.

Таким образом, к цепи нагрузки (светодиоду HL1) оказываются присоединены последовательно включенные источник питания и заряженный конденсатор С2, в результате чего следует яркая вспышка светодиода.

Расширить диапазон рабочих напряжений преобразователя позволяет транзистор VT3. Устройство работоспособно при напряжениях от 1,0 до 6,0 В. Напомним, что нижняя граница соответствует едва заметному свечению светодиода, а верхняя — потреблению устройством тока в 20 мА.

В области малых напряжений (до 1,45 В) звуковая генерация не слышна, хотя по мере последующего увеличения напряжения питания устройство начинает вырабатывать и звуковые сигналы, частота которых довольно быстро понижается.

Переход на более высокие рабочие частоты (рис. 15) за счет использования высокочастотной катушки позволяет уменьшить емкость конденсатора, «перекачивающего» энергию (конденсатор С1).

Рис. 15. Принципиальная схема низковольтного преобразователя напряжения с ВЧ-генератором.

В качестве ключевого элемента, подключающего светодиод к «плюсовой» шине питания на период следования импульса, использован полевой транзистор VT3 (КП103Г). В результате диапазон рабочих напряжений этого преобразователя расширен до 0,7… 10 В.

Заметно упрощенные, но работающие в ограниченном интервале питающих напряжений устройства показаны на рисунках 16 и 17. Они обеспечивают свечение светодиодов в диапазоне 0,7…1,5 В (при R1=680 Ом) и 0,69…1,2 В (при R1=0 Ом), а также от 0,68 до 0,82 В (рис. 17).

Рис. 16. Принципиальная схема упрощенного низковольтного преобразователя напряжения с ВЧ-генератором.

Рис. 17. Упрощенный низковольтный преобразователь напряжения с ВЧ-генератором и телефонным капсюлем в качестве катушки.

Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис. 18), где светодиод одновременно выполняет роль конденсатора и является нагрузкой генератора. Устройство работает в довольно узком диапазоне питающих напряжений, однако яркость свечения светодиода достаточно высока, поскольку преобразователь (рис. 18) является чисто индуктивным и имеет высокий КПД.

Рис. 18. Низковольтный преобразователь напряжения с генератором на аналоге инжекционно-полевого транзистора.

 

Следующий вид преобразователей достаточно хорошо известен и является более традиционным. Это преобразователи трансформаторного и автотрансформаторного типа.

На рис. 19 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит лишь три элемента, одним из которых является светоизлучающий диод.

Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может быть получено довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться даже при низком значении питающего напряжения (0,6…0,75 В).

Рис. 19. Схема преобразователя трансформаторного типа для питания светодиодов низковольтным напряжением.

В этой схеме (рис. 19) обмотки трансформатора имеют по 20 витков провода ПЭВ 0.23. В качестве сердечника трансформатора использовано ферритовое кольцо М1000 (1000НМ) К 10x6x2,5. В случае отсутствия генерации выводы одной из обмоток трансформатора следуе! поменять местами.
   
Преобразователь, показанный на рисунке 20, имеет самое низкое напряжение питания из всех рассмотренных устройств. Существенного понижения нижней границы рабочего напряжения удалось достичь за счет оптимизации выбора числа (соотношения) витков обмоток и способа их включения. При использовании высокочастотных германиевых транзисторов типа 1Т311, 1Т313 (ГТ311, ГТ313) подобные преобразователи начинают работать пои напояжении питания выше 125 мВ.

Рис. 20. Низковольтный преобразователь напряжения из 0,25В — 0,6В в 2В.

Рис. 21. Экспериментально измеренные характеристики генератора.

В качестве сердечника трансформатора, как и в предыдущей схеме, использовано ферритовое кольцо М1000 (1000НМ) К10x6x2,5. Первичная обмотка выполнена проводом ПЭВ 0,23 мм, вторичная — ПЭВ 0,33. Довольно яркое свечение светодиода наблюдается уже при напряжении 0,3 В.

На рисунке 21 представлены экспериментально измеренные характеристики генератора (рис. 20) при варьировании числа витков обмоток. Из анализа полученных зависимостей следует, что существует область оптимального соотношения числа витков первичной и вторичной обмоток, причем, с увеличением числа витков первичной обмотки минимальное рабочее напряжение преобразователя плавно снижается, причем одновременно сужается и диапазон рабочих напряжений преобразователя.

Для решения обратной задачи — расширения диапазона рабочих напряжений преобразователя — последовательно с ним может быть подключена RC-цепочка (рис. 22).

Рис. 22. Схема низковольтного преобразователя напряжения с применением RC-цепочки.

Схемы преобразователей по типу индуктивной или емкостной трех-точки

Еще один вид преобразователей представлен на рисунки 23 — 29. Их особенность — использование индуктивных накопителей энергии и схем, выполненных по типу «индуктивной» или «емкостной трех-точки» с барьерным режимом включения транзистора.
   
Генератор (рис. 23) работоспособен в диапазоне напряжений от 0,66 до 1,55 В. Для оптимизации режима работы требуется подбор номинала резистора R1. В качестве катушки индуктивности, как и во многих предыдущих схемах. использована катушка контура фильтра ПЧ индуктивностью 260 мкГн.

Рис. 23. Преобразователь напряжения для светодиода на одном транзисторе КТ315.

Так, при числе витков первичной обмотки п(1) равном 50…60 и числе витков вторичной л(II) — 12, устройство работоспособно в диапазоне питающих напряжений 260…440 мВ (соотношение числа витков 50 к 12), а при соотношении числа витков 60 к 12 — 260…415 мВ.

При использовании ферритового сердечника другого типа или размера это соотношение может нарушиться и быть иным. Полезно самостоятельно выполнить подобное исследование, а результаты для наглядности представить в виде графика.

Весьма интересным представляется использование туннельного диода в рассматриваемых генераторах (аналогичного приведенному на рис. 20), включенного вместо перехода эмиттер — база транзистора VT1.

Генератор (рис. 24) немногим отличается от предыдущего (рис. 23). Интересной его особенностью является то, что яркость свечения светодиода меняется с ростом напряжения питания (рис. 25).

Рис. 24. Преобразователь напряжения с меняющейся яркостью свечения светодиода.

Рис. 25. График зависимости яркости свечения светодиода от питающего генератор напряжения (для рисунка 24).

Причем максимум яркости достигается при 940 мВ. Преобразователь, показанный на рисунке 26, можно отнести к генераторам, выполненным по схеме «трехточки», причем светодиод выполняет роль одного из конденсаторов.

Трансформатор устройства выполнен на ферритовом кольце (1000HM) К10x6x2,5, причем его обмотки содержат приблизительно по 15…20 витков провода ПЭЛШО 0,18.

 

Рис. 26. Низковольтный преобразователь напряжения с генератором выполненном на основе трехточки.

Преобразователь (рис. 27) отличается от предыдущего точкой подключения светодиода. Зависимость яркости свечения светодиода от напряжения питания показана на рисунке 28: при повышении напряжения питания яркость вначале нарастает, затем резко снижается, после чего снова растет.

Рис. 27. Простой преобразователь напряжения для низковольтного питания светодиода АЛ307.

Рис. 28. Зависимость яркости свечения светодиода от напряжения питания.

Наиболее простой схемой преобразователей этого типа является схема, представленная на рисунке 29. Установление рабочей точки достигается подбором резистора R1.

Светодиод, как и в ряде предшествующих схем, одновременно играет роль конден сатора. В порядке эксперимента рекомендуется подключить па раллельно светодиоду конденсатор и подобрать его емкость.

Рис. 29. Очень простая схема низковольтного преобразователя напряжения на одном транзисторе.

В заключение

В качестве общего замечания по налаживанию схем, представленных выше, следует отметить, что напряжение питания всех рассмотренных устройств во избежание повреждения светодиодов не должно (за редким исключением) превышать значения 1.6…1.7 В.


Литература: Шустов М.А. Практическая схемотехника (Книга 1).

www.qrz.ru

Схема автомобильного преобразователя напряжения


Схема автомобильного преобразователя напряжения с 12v до 20v

Схема автомобильного преобразователя напряжения предназначена для повышения в автомобиле штатного бортового значения с 12v до 20v и более. Если задаться вопросом, зачем в автомобиле вообще нужен инвертор? Ответ конечно очень простой — Например, для подключения к бортовому напряжению светодиодной ленты подсветки, для зарядки аккумулятора шуроповерта с рабочим напряжением 18v, для подключения ноутбука, требующего 19v питания, а также других приборов работающих от напряжения более 12v.

Представленная здесь схема автомобильного преобразователя напряжения очень похожа на множество подобных конструкций размещенных в интернете и используемых автолюбителями, однако у каждой схемы есть свои принципиальные отличия. Так и в данной схеме созданной собственными руками для своих потребностей, имеются некоторые отличия от других, и которая у меня прекрасно работает.

Основным компонентом этой схемы является унифицированное устройство NE555 с широким диапазоном применения. Работа преобразователя построена на основе электро-движущей силы самоиндукции катушки индуктивности. При поступлении во входной каскад напряжения питания, включается интегральный таймер NE555 с последующей генерацией в своей выходной цепи импульсов прямоугольной формы, которые управляют мощным полевым транзистором, поэтому происходит периодическое открывание и закрывание его переходов. Далее по цепи управляющие сигналы поступают на катушку индуктивности, также периодами подключая и отключая ее к цепи источника питания. p>

В следствии этого процесса, импульсы ЭДС заряжают конденсаторы, установленные на выходе высоким напряжением. В данной конструкции преобразователя предусмотрена схема, собранная на транзисторе и стабилитроне, которая стабилизирует выходное напряжение. В момент появления на конденсаторах напряжения выше, чем напряжение стабилизации, то тогда стабилитрон открывается и тем самым переключает базовую цепь транзистора на плюс (+) схемы. Далее транзистор подает импульс на NE555, при котором происходит переключение ее пятого вывода на «землю» — следовательно останавливается генерация импульсов.

Установленный мной в схеме выпрямительный диод 1N4007 (VD2) служит для увеличения напряжения на выходе. Так как в данном случае мне необходимо было получить не менее 19v, а в наличие был стабилитрон рассчитанный только на 18v. При работе устройства, напряжение на 1N4007 падает 0.5v, а стабилизирующее напряжение при этом параллельно увеличивается на такое же значение. Разводку печатной платы делал под свой размер корпуса, который у меня был. Поэтому при необходимости размер платы можно сделать больше, уже относительно вашего корпуса.


Дроссель L1 изготавливал на кольце из распыленного железа взятого из ненужного блока питания ПК.


Наружний диаметр кольца 27 мм


Внутренний диаметр кольца 14 мм


Высота кольца 11 мм

Намотку выполнял эмаль-проводом с площадью сечения 0,28 мм² состоящего из трех таких жил. У меня уместилось в кольце 21 виток.


Предварительно кольцо я обмотал изолентой, так как имелись некие повреждения

Диодную сборку MOSPEC S20C40C (VD1) также позаимствовал у блока питания ПК, так как принципиально важно в этой схеме, чтобы номинальное напряжение диода было больше напряжения на выходе, то эта сборка имеющая номиналы 40v и 20А отлично подходит для этих целей.

Полевой транзистор IRFZ44 (VT1), имеет солидный есть запас как по току так и по напряжению.
Стабилитрон использовал отечественный в металле КС518, и широко распространенный транзистор малой мощности КТ315 (VT2).

Выходные конденсаторы желательно подбирать с большой емкостью, это даст возможность для быстрого накопления большого запаса электроэнергии, для последующей ее передачи в нагрузку. Я в этой схеме использовал пару электролитических конденсаторов с емкостью 2200uF на 25v.

При работе устройства без нагрузки, значение напряжения немного повышено

После подключении нагрузки оно приходит в нормальные пределы


Мультиметр красного цвета контролирует значение тока, а черного цвета — напряжение

Стабилизирующие напряжения


На входе 13.5v на выходе 18.5v


Здесь на входе 16v, на выходе 18.5v


На этом тестировании по входу 11.7v, по выходу 18.2v. Здесь напряжение несколько просело, так как блок питания немного слабоват.

Еще раз поясню — данный вариант повышающего преобразователя мне потребовался в основном для обеспечения питанием ноутбука мощностью 60 Вт, который у меня постоянно находится в автомобиле.
Здесь на фото показано уже собранная плата, только без корпуса.


usilitelstabo.ru

0 comments on “Схемы преобразователей напряжения – Схемы преобразователей

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *